Researchers discover new way to design metal nanoparticle catalysts

February 22, 2011

Tiny metal nanoparticles are used as catalysts in many reactions, from refining chemicals to producing polymers and biofuels. How well these nanoparticles perform as catalysts for these reactions depend on which of their crystal faces are exposed.

But previous attempts to design these nanoparticles by changing their shape have failed because the structures are unstable and will revert back to their equilibrium shape.

Now, researchers at Northwestern University's Institute for Catalysis in Energy Processing have discovered a new strategy for fabricating metal nanoparticles in catalysts that promises to enhance the selectivity and yield for a wide range of structure-sensitive catalytic reactions. The team, led by Laurence D. Marks, professor of materials science and engineering at the McCormick School of Engineering and Applied Science, discovered that they could design nanoparticles by designing the particle's support structure.

"Instead of trying to engineer the nanoparticles, we've engineered the substrate that the nanoparticle sits on," Marks said. "That changes what faces are exposed." Their results were published in February in the journal Nano Letters.

This solution was a bit of a discovery: the team created the nanoparticle samples, discovered that they didn't change their shape (as the laws of thermodynamics caused previously designed nanoparticles to do), then set out figuring how it worked. It turns out that epitaxy -- the relationship between the position of the atoms in the nanoparticle and the position of the atoms on the substrate -- was more important to design than previously thought.

The team is currently testing the nanoparticles in a catalytic reactor, and early results look promising, Marks says. The nanoparticles appear to be stable enough to survive the rigors of long-term use as catalysts.

"It opens the door to designing better catalysts," Marks said. "This method could be used with a variety of different metal nanoparticles. It's a new strategy, and it could have a very big impact."
-end-
The Nano Letters paper is titled "Oriented Catalytic Platinum Nanoparticles on High Surface Area Strontium Titanate Nanocuboids." The authors of the paper are James A. Enterkin (first author), Kenneth R. Poeppelmeier and Laurence D. Marks from Northwestern.

The Northwestern University Institute for Catalysis in Energy Processing, funded through the US Department of Energy, Office of Basic Energy Science, supported the research.

Northwestern University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.