Cancer in 3-D

February 22, 2016

Cancer cells don't live on glass slides, yet the vast majority of images related to cancer biology come from the cells being photographed on flat, two-dimensional surfaces--images that are sometimes used to make conclusions about the behaviour of cells that normally reside in a more complex environment. But a new high-resolution microscope, presented February 22 in Developmental Cell, now makes it possible to visualize cancer cells in 3D and record how they are signaling to other parts of their environment, revealing previously unappreciated biology of how cancer cells survive and disperse within living things.

"There is clear evidence that the environment strongly affects cellular behavior--thus, the value of cell culture experiments on glass must at least be questioned," says senior author Reto Fiolka, an optical scientist at the University of Texas Southwestern Medical Center. "Our microscope is one tool that may bring us a deeper understanding of the molecular mechanisms that drive cancer cell behavior, since it enables high-resolution imaging in more realistic tumor environments."

In their study, Fiolka and colleagues, including co-senior author Gaudenz Danuser, and co-first authors Meghan Driscoll and Erik Welf, also of UT Southwestern, used their microscope to image different kinds of skin cancer cells from patients. They found that in a 3D environment (where cells normally reside), unlike a glass slide, multiple melanoma cell lines and primary melanoma cells (from patients with varied genetic mutations) form many small protrusions called blebs. One hypothesis is that this blebbing may help the cancer cells survive or move around and could thus play a role in skin cancer cell invasiveness or drug resistance in patients.

The researchers say that this is a first step toward understanding 3D biology in tumor microenvironments. And since these kinds of images may be too complicated to interpret by the naked eye alone, the next step will be to develop powerful computer platforms to extract and process the information.

"When we conceived of this project, we first asked what we wanted to measure and then designed a microscope and analytical platform to achieve this goal," says co-first author Erik Welf, a cell biologist. "We hope that now instead of asking what we can measure, scientists will ask what we must measure in order to make meaningful contributions to cancer cell biology."

The microscope control software and image analytical code are freely available to the scientific community.
-end-
The authors were supported by the Cancer Prevention Research Institute of Texas and the National Institutes of Health.

Developmental Cell, Welf and Driscoll et al.: "Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments" http://dx.doi.org/10.1016/j.devcel.2016.01.022

Developmental Cell (@Dev_Cell), published by Cell Press, is a bimonthly, cross-disciplinary journal that brings together the fields of cell biology and developmental biology. Articles provide new biological insight of cell proliferation, intracellular targeting, cell polarity, membrane traffic, cell migration, stem cell biology, chromatin regulation and function, differentiation, morphogenesis and biomechanics, and regeneration and cellular homeostasis. For more information, please visit http://www.cell.com/developmental-cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Microscope Articles from Brightsurf:

Microscope lens inspired by lighthouse
Custom-fabricated lenses make it easy to attach high-tech microscopes directly to cell incubators.

Print your own laboratory-grade microscope for US$18
For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.

Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.

Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.

Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.

SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.

New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.

Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.

New method gives microscope a boost in resolution
Scientists at the University of W├╝rzburg have been able to boost current super-resolution microscopy by a novel tweak.

Read More: Microscope News and Microscope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.