Crystal and magnetic structure of multiferroic hexagonal manganite

February 22, 2016

Ever since Curie conjectured on "the symmetry in physical phenomena, symmetry of an electric field and a magnetic field", it has long been a dream for material scientists to search for this rather unusual class of material exhibiting the coexistence of magnetism and ferroelectricity in a single compound known as a multiferroic compound.

Multiferroic materials are a class of crystalline material which exhibit a number of unique properties, in which at least two order parameters exist simultaneously; ferro- (or antiferro-) magnetic, ferroelectric and ferroelastic degrees of freedom. These properties give rise to a number of useful and practical applications such as memory devices and sensors. Even though multiferroic materials are relatively commonplace much is still not known about their molecular make-up and properties. This article [Sim et al. (2016), Acta Cryst. B72, 3-19; doi: 10.1107/S2052520615022106] presents an extended and comprehensive review of the structure and multiferroic properties of the hexagonal rare-earth manganite RMnO3, in which there are ferroelectric and magnetic orders. Strong interaction between these orders causes a series of interesting properties of multiferroics. The review describes multiferroics with antiferromagnetic and ferroelectric orders. A commentary about this paper has also been commissioned [Pirogov (2016), Acta Cryst. B72, 1-2; doi: 10.1107/S2052520616001062]

Thanks to the extensive volume of works carried out in this field worldwide over the past decade or so, the list of materials exhibiting multiferroic behaviour has expanded far beyond the few that were studied in Russia at the time of Curie's conjecture in the 1960s. This experimental renaissance of multiferroic physics gives a long overdue justification to the earlier pioneering theoretical works and judging by the pace of current research is set to continue well into the 21st Century.

International Union of Crystallography

Related Ferroelectric Articles from Brightsurf:

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

Discovery of large family of two-dimensional ferroelectric metals
Recently, a team from University of Chinese Academy of Sciences, led by Prof.

Understanding of relaxor ferroelectric properties could lead to many advances
A new fundamental understanding of polymeric relaxor ferroelectric behavior could lead to advances in flexible electronics, actuators and transducers, energy storage, piezoelectric sensors and electrocaloric cooling, according to a team of researchers at Penn State and North Carolina State.

Pushing periodic disorder induced phase-matching into deep-ultraviolet spectral region
Phase matching condition is the key criteria for the efficient nonlinear frequency conversion.

Controllable functional ferroelectric domain walls under piezoresponse microscope
Although ferroelectric bulk materials have excellent photoelectric, piezoelectric and dielectric properties, they could hardly meet the increasing need for integrated, micro-sized and wearable devices.

Physicists find evidence of previously unseen transition in ferroelectrics
Proposed a century ago, inverse transitions seem to contradict the fundamental law that disorder increases with temperature.

Designer-defect clamping of ferroelectric domain walls for more-stable nanoelectronics
Engineered defects in ferroelectric materials provides key to improved polarisation stability, a significant step forward for domain-wall nanoelectronics in data storage.

Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.

MIPT researchers close in on new nonvolatile memory
Researchers from MIPT, along with their colleagues from Germany and the U.S., have achieved a breakthrough on the way to new types of nonvolatile memory devices.

Reorganizing a computer chip: Transistors can now both process and store information
Researchers have created a more feasible way to combine transistors and memory on a chip, potentially bringing faster computing.

Read More: Ferroelectric News and Ferroelectric Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to