USU biological engineer patents method to make natural blue dye

February 22, 2016

A Utah State University researcher has taken a big step toward making a safer, more natural dye that can be used in the food, textile, cosmetic and other industries.

Dr. Jixun Zhan, an associate professor of biological engineering at USU, has secured a patent for an innovative method to produce the deep blue dye known as indigoidine. The tint was originally synthesized from a bacterial strain found in Rhode Island and offered a promising alternative to the synthetic dyes used to color jeans, leather, food and paper.

The bacterium itself, however, does not produce significant quantities of indigoidine, so Zhan proposed mimicking the organism's biosynthetic machinery inside a heterologous host cell: E. coli. These mostly harmless bacteria can churn out significantly higher yields of the blue pigment and provide an efficient way to produce the dye without using synthetic compounds that could pose a threat to human health and the environment.

"In the original producing strain, there is only one copy of the biosynthetic gene that synthesizes the pigment," said Zhan. "But in E. coli. we can make multiple copies of the gene and induce its expression under a stronger promoter."

Zhan's patent also includes the development of a new method to further process and purify the pigment before it's ready for use - an important step when using the colorant in food and drinks. Business experts say the patent presents an exciting opportunity across several industries.

"The demand for natural dyes is growing rapidly," said Christian Iverson, business development director for USU. "I've had a number of conversations with food and consumer product companies that are looking for natural dyes to replace some or all the synthetic chemical-based dyes currently in use - in particular blue."

The invention is just the latest advancement Zhan and his team have made in the growing field of combinatorial biosynthesis. In other studies, Zhan is using bacteria as a heterologous host to produce natural, health-promoting compounds that are normally found in plants. In fact, it was his work on bioactive natural products that led Zhan to the indigoidine bacterium.

"We were interested in the biosynthesis of a compound called herboxidiene by this particular bacterium," he said. "Herboxidiene is an anti-cholesterol compound that we have been working on with support from the American Heart Association. We sequenced the genome of this bacterium, and while we identified all the genes that are involved in herboxidiene biosynthesis, we also found a pathway that can synthesize indigoidine."

Zhan says he's confident manufacturers will see the added value of his natural dye process. He says today's consumers are increasingly aware of the synthetic ingredients found in everyday products and are looking for natural substitutes wherever possible.
-end-
Media Contacts:

Matt Jensen | Utah State University | College of Engineering
office 435-797-8170 | cell 801-362-0830 | matthew.jensen@usu.edu
engineering.usu.edu | @EngineeringUSU

Jixun Zhan | Utah State University | College of Engineering
435-797-8774 office | jixun.zhan@usu.edu

Utah State University

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.