How climate change may be impacting the world's tropical forests

February 22, 2016

New research suggests that multi-year droughts will significantly alter the structure, composition, and dynamics of second-growth tropical forests, which have re-grown after cessation of agricultural activity or a major disturbance such as fire. These second-growth forests represent the prevalent tropical forest cover today.

Investigators combined 14 years of data on annual tree growth and survival with local climate records in the Caribbean lowlands of Costa Rica to evaluate tree responses to inter-annual differences in temperature and dry-season water stress.

"Because tropical forests contain the world's greatest diversity of tree species, identifying the traits that best predict tree responses to changing climatic drivers will be an important step in building models of tropical forest dynamics," said Dr. Maria Uriarte, lead author of the Functional Ecology study.

The article is part of a Demography Beyond the Population Special Feature that is a unique large-scale ecological collaboration including articles in all six British Ecological Society journals. Its goal is to highlight the potential of demography to connect across scales and inform a broad range of questions in ecology and evolution.
-end-


Wiley

Related Tropical Forests Articles from Brightsurf:

Restoring degraded tropical forests generates big carbon gains
An international team of scientists from 13 institutions has provided the first long-term comparison of aboveground carbon recovery rates between naturally regenerating and actively restored forests in Malaysian Borneo.

Warming threat to tropical forests risks release of carbon from soil
Billions of tonnes of carbon dioxide risk being lost into the atmosphere due to tropical forest soils being significantly more sensitive to climate change than previously thought.

New global study shows 'best of the last' tropical forests urgently need protection
The world's 'best of the last' tropical forests are at significant risk of being lost, according to a paper released today in Nature Ecology and Evolution.

Scientists identify a temperature tipping point for tropical forests
Carbon dioxide is an important greenhouse gas, released as fossil fuels are burned.

Tropical forests can handle the heat, up to a point
Tropical forests face an uncertain future under climate change, but new research published in Science suggests they can continue to store large amounts of carbon in a warmer world, if countries limit greenhouse gas emissions.

Long-term resilience of Earth's tropical forests in warmer world
A long-term assessment of the sensitivity of hundreds of tropical forest plots to increasing temperatures brings encouraging news: in the long run, Earth's tropical forests may be more resilient to a moderately warming world than short-term predictions have suggested.

Online tool helps to protect tropical forests
A new tool maps the threats to the tropical dry forests in Peru and Ecuador.

A glimpse into the future of tropical forests
Tropical forests are a hotspot of biodiversity. Against the backdrop of climate change, their protection plays a special role and it is important to predict how such diverse forests may change over decades and even centuries.

Shedding light on how much carbon tropical forests can absorb
Tropical forest ecosystems are an important part of the global carbon cycle as they take up and store large amounts of CO2.

Tropical forests' carbon sink is already rapidly weakening
The ability of the world's tropical forests to remove carbon from the atmosphere is decreasing, according to a study tracking 300,000 trees over 30 years, published today in Nature.

Read More: Tropical Forests News and Tropical Forests Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.