Nav: Home

Rapid Imaging of Polymers Could Lead to Better Bioimaging

February 22, 2017

Developing faster imaging techniques that can provide information on the chemical and structural properties of non-biological macromolecular materials could provide better imaging of biological materials, particularly histology samples.

A recent study by researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois identifies a method of Quantum Cascade Laser-based (QCL) infrared spectroscopic imaging that provides a more rapid method than conventional Fourier transform infrared imaging (FT-IR) to examine spherulites, large semicrystalline polymer samples, in order to identify chemical and structural properties. Their work, "Rapid visualization of macromolecular orientation by discrete frequency mid-infrared spectroscopic imaging," was published in the journal Analyst.

"What we really wanted to do in this paper is to test how far we can push technology in terms of speed and signal-to-noise ratio (SNR)," said Tomasz Wrobel, a Beckman Institute Postdoctoral Fellow and lead author of the paper. "We chose a simpler system of polymers that are well known, we already know their chemical composition and we know their structure."

Improving the speed of imaging brings some problems: essentially the faster the imaging, the more noise is present. FT-IR also uses a larger number of frequencies, which can compromise the speed of imaging a small area. By incorporating QCL, the researchers use a laser source that emits one frequency of IR light at a time, moreover a polarized light. To study a system like spherulites, which has orientation dependency, the polarized light provides better structural information.

"We call it smart microscopy because we only spend time measuring frequencies which are important for our given problem," Wrobel said. "Instead of shining a light from all frequencies, we choose those two to three crucial discrete frequencies."

In June 2016, the researchers discussed the concepts for the upcoming trend of discrete-frequency infrared and Raman spectroscopic imaging in an issue of Spectroscopy.

"We came up with approximately 180 factor of speed improvement over the technology that does not use the QCL. We achieve this through the new laser source, which is emitting just one frequency of light at a time," Wrobel said.

FT-IR allows them to acquire all of the frequencies that correspond to chemical properties in order to choose the correct light frequency that can quickly provide the information they need. This approach was used in a prototype instrument developed with Agilent Technologies in collaboration with Rohit Bhargava's group at the Beckman Institute.

"We can have a beautiful visualization of the structure in a very rapid fashion, comparable or even faster than in the visible range, which is the state of the art," Wrobel said. "Given that also we achieve chemical composition, not only structure, this is a very nice method of doing that in a fast way on a large scale, both chemically and structurally."

Wrobel focuses on developing imaging techniques to improve how prostate cancer is diagnosed. Working with Bhargava, a professor of bioengineering and a member of Beckman's Bioimaging Science and Technology Group, Wrobel hopes to broaden the technique for biological samples in a clinical setting.

"This work allows us to rapidly image molecular orientation in very large areas for the first time thanks to our collaboration with Agilent. It's a great example of problems across disciplines being connected and cooperation between academia and industry pushing the boundaries of chemical analysis capability," Bhargava said.

"I am working on speeding up cancer diagnoses, because diagnosis of cancer has been done with FT-IR by Rohit quite a few years ago and now we're trying to move forward to develop this, to put this in the clinic," Wrobel said. "A clinical setting requires speed, which we didn't have previously, so now I'm pushing QCL to diagnose cancer on a clinically relevant scale."

The research was conducted with support from the Chevron Phillips Chemical Company, LP, and with support from the "Mobility Plus" program from the Polish Ministry of Science and Higher Education.
-end-


Beckman Institute for Advanced Science and Technology

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".