Nanotechnology and nanopore sequencing

February 22, 2017

DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop. These instructions are based on the order of the DNA bases, called nucleotides. To unlock the instructions, carried by a DNA molecule, we need to read these nucleotide sequences (by performing DNA sequencing). There are various methods for sequencing DNA, including Sanger sequencing, Illumina, 454, Ion Torrent sequencing, SMRT sequencing (Pacific Biosciences), and Nanopore sequencing.

Nanopore sequencing is a modern and promising technique, in which many researchers are interested. This method benefits from the potential advantages of label-free sequencing as well as the long reads, both of which help in easing the sequencing requirements. In this method, the DNA zips through a tiny pore (nanopore) in a membrane. Each nucleotide which passes through the nanopore results in a unique characteristic change, uncovering the sequence of the biomolecule. Analyzing the DNA, directly taken from the cell, as opposed to synthesized molecules, is another advantage of this method, enhancing the sequencing accuracy.

Nanopore sequencing methods are based on two types of nanopores: (1) solid-state nanopores, and (2) protein-based nanopores. In a review published in the journal, Recent Patents on Nanotechnology, by Roozbeh Abedini-Nassab, recent advances presented in various articles and patents in the field of solid state nanopore sequencing, including sequencing methods, membrane materials and their fabrication techniques, drilling methods, and biomolecule translocation speed control ideas are investigated. This review shows how nanotechnology is helping in revealing crucial biological information, which can be used later in solving problems in biological research.
-end-
For more information about the article, please visit http://www.eurekaselect.com/142838

Reference: Abedini-Nassab, R.; (2017). Nanotechnology and Nanopore Sequencing. Recent Patents on Nanotechnology., DOI: 10.2174/1872210510666160602152913

Bentham Science Publishers

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.