Nav: Home

How proteins find one another

February 22, 2017

Researchers from Charité - Universitätsmedizin Berlin have been studying two proteins that play a vital role in many bodily processes. The aim of the research was to establish how G-protein-coupled receptors (GPCRs) and arrestin form complexes. The human GPCR family consists of nearly one thousand different types of membrane proteins, with the majority involved in sensory and neuronal processes. Results from this research, which has been published in the current issue of the journal Nature Communications*, identify a previously unknown binding element critical to the arrestin - GPCR interaction.

As crucial drug targets, G-protein-coupled receptors are responsible for the effectiveness of nearly half of all medicines prescribed today. GPCRs are integral membrane proteins that control and modulate the processing of sensory and physiological stimuli, such as those relevant to our sight and taste, or those involved in controlling our heart rate. Arrestins play a key role in controlling the activity and signal transduction of GPCRs inside the cells of the body. "GPCRs are the target of a wide variety of drug-based treatments, which is why it is so important for us to understand their structure and function, and to fully understand how these membrane proteins interact at the molecular level. In order to develop better drugs with fewer side effects, this knowledge is necessary," explains Dr. Martha Sommer, who chairs the Arrestin Working Group at Charité's Institute of Medical Physics and Biophysics.

Some of the side effects that occur with certain medicines (such as morphine-based drugs) are the result of arrestin-dependent signaling pathways. The researchers' close observation of the interactions between arrestins and GPCRs yielded crucial conclusions. "We asked ourselves how these two proteins manage to find each other, and what happens when they come together to form a complex. The recent crystal structure of a GPCR-arrestin complex prompted us to ask whether a section of arrestin called the C-edge might interact with the membrane adjacent to the GPCR," explains Dr. Sommer. "Using a combination of computer simulations, which we conducted in cooperation with Dr. Jana Selent at the UPF Barcelona, and site-directed fluorescence spectroscopy, we were able to show that loops within the C-edge of arrestin binds to the membrane." The existence of this type of interaction was previously unknown, and its discovery opens up a whole new field of research regarding how the membrane influences the function of arrestin. A better understanding of GPCR-arrestin interactions is essential if we are to develop drugs with fewer side effects. Dr. Sommer's team have already begun to explore the role of the membrane on the structure and interactions inside the GPCR-arrestin complex.
*Ciara C.M. Lally, Brian Bauer, Jana Selent & Martha E. Sommer. C-edge loops of arrestin function as a membrane anchor. Nature Communications, 2017 March 21. doi: 10.1038/ncomms14258.


Dr. Martha Sommer
Institute of Medical Physics and Biophysics / Chair of the Arrestin Working Group (AG Arrestin)
Charité - Universitätsmedizin Berlin
Tel: +49 30 450 524 200


Institute of Medical Physics and Biophysics / Arrestin Working Group (AG Arrestin)

Charité - Universitätsmedizin Berlin

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".