Nav: Home

How proteins find one another

February 22, 2017

Researchers from Charité - Universitätsmedizin Berlin have been studying two proteins that play a vital role in many bodily processes. The aim of the research was to establish how G-protein-coupled receptors (GPCRs) and arrestin form complexes. The human GPCR family consists of nearly one thousand different types of membrane proteins, with the majority involved in sensory and neuronal processes. Results from this research, which has been published in the current issue of the journal Nature Communications*, identify a previously unknown binding element critical to the arrestin - GPCR interaction.

As crucial drug targets, G-protein-coupled receptors are responsible for the effectiveness of nearly half of all medicines prescribed today. GPCRs are integral membrane proteins that control and modulate the processing of sensory and physiological stimuli, such as those relevant to our sight and taste, or those involved in controlling our heart rate. Arrestins play a key role in controlling the activity and signal transduction of GPCRs inside the cells of the body. "GPCRs are the target of a wide variety of drug-based treatments, which is why it is so important for us to understand their structure and function, and to fully understand how these membrane proteins interact at the molecular level. In order to develop better drugs with fewer side effects, this knowledge is necessary," explains Dr. Martha Sommer, who chairs the Arrestin Working Group at Charité's Institute of Medical Physics and Biophysics.

Some of the side effects that occur with certain medicines (such as morphine-based drugs) are the result of arrestin-dependent signaling pathways. The researchers' close observation of the interactions between arrestins and GPCRs yielded crucial conclusions. "We asked ourselves how these two proteins manage to find each other, and what happens when they come together to form a complex. The recent crystal structure of a GPCR-arrestin complex prompted us to ask whether a section of arrestin called the C-edge might interact with the membrane adjacent to the GPCR," explains Dr. Sommer. "Using a combination of computer simulations, which we conducted in cooperation with Dr. Jana Selent at the UPF Barcelona, and site-directed fluorescence spectroscopy, we were able to show that loops within the C-edge of arrestin binds to the membrane." The existence of this type of interaction was previously unknown, and its discovery opens up a whole new field of research regarding how the membrane influences the function of arrestin. A better understanding of GPCR-arrestin interactions is essential if we are to develop drugs with fewer side effects. Dr. Sommer's team have already begun to explore the role of the membrane on the structure and interactions inside the GPCR-arrestin complex.
-end-
*Ciara C.M. Lally, Brian Bauer, Jana Selent & Martha E. Sommer. C-edge loops of arrestin function as a membrane anchor. Nature Communications, 2017 March 21. doi: 10.1038/ncomms14258.

Contact:

Dr. Martha Sommer
Institute of Medical Physics and Biophysics / Chair of the Arrestin Working Group (AG Arrestin)
Charité - Universitätsmedizin Berlin
Tel: +49 30 450 524 200
Email: martha.sommer@charite.de

Links:

Institute of Medical Physics and Biophysics / Arrestin Working Group (AG Arrestin)
https://biophysik.charite.de/forschung/arrestin_ag_dr_martha_sommer/

Charité - Universitätsmedizin Berlin

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.