Nav: Home

The genetics behind being Not Like Daddy

February 22, 2017

Heidelberg, 22 February 2017 - A common strategy to create high-yielding plants is hybrid breeding - crossing two different inbred lines to obtain characteristics superior to each parent. However, getting the inbred lines in the first place can be a hassle. Inbred lines consist of genetically uniform individuals and are created through numerous generations of self-crossing. In maize, the use of so-called "haploid inducers" provides a short cut to this cumbersome procedure, allowing to produce inbred lines in just one generation. A study by Laurine Gilles and colleagues, published today in The EMBO Journal, sheds light on the genetics behind haploid induction. "Knowing the molecular identity of haploid induction represents an important breakthrough to fully understand the fertilization process in plants, and hopefully will allow to translate this breeding tool to other species," said the study's senior author Dr. Thomas Widiez, an INRA (Institut National de la Recherche Agronomique) researcher at the École Normale Supérieure in Lyon, France.

Haploid inducers were first discovered in the 1950s. Pollination of female flower with pollen of a haploid inducer strain will yield offspring that are haploid, meaning that they will only contain one single copy of each gene as opposed to the usual two copies. All their genetic material comes from the mother. Treating these haploid plants with a chemical that causes chromosome doubling will lead to plants with two identical copies of all genes in just one generation. With classical inbreeding, this condition takes seven to ten years to achieve.

Haploid offspring in maize are not unusual; they emerge naturally, albeit at a very low rate. Haploid inducers can bring this rate up to about 10% of the progeny being haploid - enough to make it a useful tool for breeders. More than 50 years after the discovery of haploid inducers, Widiez and his team, in collaboration with Limagrain, have now identified the gene that mainly causes the phenomenon and termed it Not Like Dad to highlight the fact that its dysfunction induces embryos without genetic contribution from the father. The gene product is necessary for successful fertilization so that its failure promotes the formation of haploid embryos. Two other research groups have in parallel identified the same gene and come to similar conclusions.

Haploid inducers are nowadays powerful breeding tools, but as yet the technology is restricted to maize, while in-vitro haploid induction in certain crops is labor-intense. Understanding the genes and molecular mechanism behind the process will help translate this technology to other crops. The identification of Not Like Dad is an important step to this end. While Not Like Dad is the most important contributor to haploid induction in inducer lines, there are at least seven more genes that play a role in increasing the rate of haploid offspring. Revealing their molecular identity, as well as understanding their mode of action, will be important to fully understand the process.
-end-
Loss of pollen-specific phospholipase Not Like Dad (NLD) triggers gynogenesis in maize

Laurine M Gilles, Abdelsabour Khaled, Jean-Baptiste Laffaire, Sandrine Chaignon, Ghislaine Gendrot, Jérôme Laplaige, Hélène Bergès, Genséric Beydon, Vincent Bayle, Pierre Barret, Jordi Comadran, Jean-Pierre Martinant, Peter M. Rogowsky and Thomas Widiez

Read the paper: doi: 10.15252/embj.201694969

About EMBO

EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. ?For more information: http://www.embo.org

EMBO

Related Genetics Articles:

Improve evolution education by teaching genetics first
Evolution is a difficult concept for many students at all levels, however, a study publishing on May 23 in the open access journal PLOS Biology has demonstrated a simple cost-free way to significantly improve students' understanding of evolution at the secondary level: teach genetics before you teach them evolution.
Study unravels the genetics of childhood 'overgrowth'
Researchers have undertaken the world's largest genetic study of childhood overgrowth syndromes -- providing new insights into their causes, and new recommendations for genetic testing.
Could genetics influence what we like to eat?
Gene variants could affect food preferences in healthy people, according to a new study.
Reverse genetics for rotavirus
Osaka University scientists generate a new plasmid-based reverse genetics system for rotaviruses.
The genetics behind being Not Like Daddy
A common strategy to create high-yielding plants is hybrid breeding.
More Genetics News and Genetics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.