Nav: Home

CubeSats: Shaping possibilities in space

February 22, 2017

For more than a decade, CubeSats, or small satellites, have paved the way to low-Earth orbit for commercial companies, educational institutions, and non-profit organizations. These small satellites offer opportunities to conduct scientific investigations and technology demonstrations in space in such a way that is cost-effective, timely and relatively easy to accomplish.

The cube-shaped satellites measure about four inches on each side, have a volume of about one quart and weigh less than three pounds per unit (U). CubeSats can also be combined and built to standard dimensions of 1U, 2U, 3U, 6U, etc. for configurations about the size of a loaf of bread, large shoebox, microwave, and more.

These small sats are used by scientists and researchers from all over the world as a way to take bold steps when it comes to space science and exploration. Their small size makes it possible to rapidly build and test, making CubeSats an ideal and affordable way to explore new technologies and ideas.

Commercial Entities

CubeSat technology is used by many organizations outside of NASA to explore low-Earth orbit and the effects of microgravity. Together with NASA, companies like Orbital ATK, SpaceX, and NanoRacks give commercial companies the opportunity to fly their CubeSats as auxiliary payloads on cargo resupply missions to the International Space Station. In addition, Rocket Lab and Virgin Galactic will soon provide dedicated CubeSat launches from the new Venture Class Launch Services. CubeSats may be deployed directly from the rocket, from a spacecraft, or from the station itself depending on the mission.

Planet Labs have developed a series of CubeSats to be launched across several expeditions, many of which have been deployed from the International Space Station via the NanoRacks CubeSat Deployer. These Earth-imaging satellites will provide imagery to a variety of users as they focus on highly populated and agricultural areas to study urbanization and deforestation. The images will be used to improve natural disaster relief and crop yields in developing nations.

Educational Institutions and Non-profit Organizations

NASA's CubeSat Launch Initiative provides opportunities for small satellite payloads built by universities, high schools and non-profit organizations to fly on upcoming launches. Through innovative technology partnerships, NASA provides these CubeSat developers a low-cost pathway to conduct scientific investigations and technology demonstrations in space thus enabling students, teachers and faculty to obtain hands-on flight hardware development experience.

Each proposed investigation must demonstrate a benefit to NASA by addressing aspects of science, exploration, technology development, education or operations relevant to NASA's strategic goals. This initiative provides NASA a mechanism for low-cost technology development and scientific research to help bridge strategic knowledge gaps and accelerate flight-qualified technology.

Since its inception CSLI has selected 152 CubeSat missions from 68 universities and in 2015, NASA launched first CubeSat designed and built by elementary students. The recent eighth round of CubeSat selections will include 34 small satellites from 19 states and the District of Columbia to fly as auxiliary payloads aboard missions planned to launch in 2018, 2019 and 2020

Benefits on Earth

CubeSat missions benefit Earth in varying ways. From Earth imaging satellites that help meteorologists to predict storm strengths and direction, to satellites that focus on technology demonstrations to help define what materials and processes yield the most useful resources and function best in a microgravity environment, the variety of science enabled by CubeSats results in diverse benefits and opportunities for discovery.

"You never know what they're going to discover or find," said Susan Mayo, National Lab and Education Specialist for the International Space Station Program Science Office. "What better systems will emerge for Earth imaging? Are we going to develop a better system for doing something? You never know what long-term impact can come out of it. That's what this is all about - how is it going to benefit life on Earth in the end?"

CubeSats are bringing dreams of spaceflight, discovery and science closer to home than ever. For more information about science and research aboard the station, visit ISS Research and Technology.
-end-


NASA/Johnson Space Center

Related International Space Station Articles:

Experiment aboard space station studies 'space weather'
To study conditions in the ionosphere, Cornell University research engineer Steven Powell and others in the College of Engineering have developed the FOTON (Fast Orbital TEC for Orbit and Navigation) GPS receiver.
Earth science on the Space Station continues to grow
Two new Earth science instruments are scheduled to make their way to the station Feb.
For space station astronauts, spinal muscles shrink after months in space
While astronauts on long space missions do not experience a change in spinal disc height, the muscles supporting the spine weaken, find researchers at University of California San Diego School of Medicine.
Swarm of satellites to explore Earth's shield from International Space Station
A swarm of 50 small satellites -- known as cubesats and weighing an average of 2 kg each -- will be launched from the International Space Station in the European-led as QB50 mission to explore the little-understood region above Earth known as the thermosphere.
Pitt researcher's work headed to International Space Station
Rocky S. Tuan, Ph.D., has received a research grant from the Center for the Advancement of Science in Space to continue his work on a 3-D microphysiological system to be conducted on board the International Space Station to evaluate the accelerated aging and degeneration process of bones that occurs in space.
Antarctic fungi survive Martian conditions on the International Space Station
European scientists have gathered tiny fungi that take shelter in Antarctic rocks and sent them to the International Space Station.
How mold on space station flowers is helping get us to Mars
When Scott Kelly tweeted a picture of moldy leaves on the current crop of zinnia flowers aboard the International Space Station, it could have looked like the science was doomed.
Getting into the flow on the International Space Station
The Packed Bed Reactor Experiment (PBRE) is a basic science investigation designed to fill in the missing information as to how two-phase mixtures flow through porous media in microgravity.
Waterloo to lead new experiment aboard International Space Station
A spacecraft carrying supplies for a new physiology experiment led by a University of Waterloo researcher will launch to the International Space Station on Thursday, the Canadian Space Agency announced.
Space station investigation goes with the flow
The investigation's success could help scientists develop countermeasures that will influence the future of human spaceflight on long-duration missions.

Related International Space Station Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".