Nav: Home

Precise inactivation of neural messenger receptor wipes out fear memory in mice

February 22, 2017

Japan - The delivery of chemical messenger (neurotransmitter) receptors to the junctions between nerve cells (synapses) is crucial to cognitive processes such as memory. One way of understanding the function of these receptors is to inactivate them and observe the outcome. However, this is only informative if the inactivation is precise with respect to space and time. Many techniques used to block receptor functions affect both cell surface and internal forms of the proteins, yet neurotransmitter receptors typically work at the cell surface. Work at Japanese institutions, including Yokohama City University, Osaka University and the University of Tokyo, modified a light-induced means of producing a burst of destructive oxygen (CALI: chromophore-assisted light inactivation) by incorporating an antibody to achieve specificity in protein inactivation. The study was reported in Nature Biotechnology.

The technique known as CALI has previously been applied to investigate protein functions. It uses light irradiation to generate a temporary toxic form of oxygen that causes an area of damage shorter than a typical protein-protein interaction distance. In the present work, researchers made an antibody against the outer part of the neurotransmitter receptor GluA1 that they labeled with a light-sensitive molecule (a photosensitizer). The antibody provided the necessary specificity to inactivate GluA1 receptor synapse responses both in cultured cells and in vivo in mice.

The team injected the labeled antibody into the hippocampus, a region of the brain involved in memory and navigation, of mice. They then assessed its effect on memory formation by using a fear-learning task in which mice move between light and dark boxes, receiving an electric foot shock in the dark boxes only so they learn to favor the light boxes. This task was shown by the team to require the delivery of GluA1 to synapses in the rat hippocampus in an earlier study.

"In response to illumination of the mouse hippocampus with green light, we found that mice returned to the dark boxes more quickly than control animals," study first author Kiwamu Takemoto says. "This showed that the fear memory had been erased by the inactivation of synaptic GluA1."

The specificity of the process for the GluA1 type of receptor was shown by varying the time at which CALI was performed after the mice first experienced the fear-learning task. Administering CALI up to 2 hours after the first task resulted in electrical activity representative of the delivery of GluA1 receptors to synapses. However, this activity was undetectable 24 hours after the first task. The researchers interpret this as evidence for the replacement of GluA1 receptors by receptors containing the related protein GluA2, which is consistent with the fact that mice treated with CALI at the 24-hour time point do not lose their fear memory.
-end-


Osaka University

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".