Nav: Home

'Smart' bacteria remodel their genes to infect our intestines

February 22, 2017

Infectious diarrhea, a common disease of children, is responsible for over 2 million infant deaths annually in developing counties alone. A primary cause of this and other devastating conditions is enteropathogenic bacteria, which attack the intestinal tract when contaminated food is consumed.

The infection process involves hundreds of genes and proteins, both in the infectious bacteria and the human host. However, the processes by which the pathogens establish themselves in our gut are poorly understood.

Now, a new study published in the prestigious journal Science, by researchers at the Hebrew University of Jerusalem's Faculty of Medicine, describes how pathogens sense their host, and tailor their gene expression to exploit their host to cause disease. The research was led by led by Prof. Ilan Rosenshine, the Etta Rosensohn Professor of Bacteriology at the Hebrew University.

Working with a pathogenic strain of E. coli, the researchers found that the bacteria can sense attachment to the human intestinal cells and activate gene expression in response. This was demonstrated by engineering one of these genes to express a protein that stains the expressing bacteria to appear green under the microscope. Under microscopic examination, the researchers observed that only the attached bacteria fluoresce in bright green, whereas non-attached bacteria remain dark.

The researchers also deciphered how upon sensing that it has attached to intestinal cells, the pathogen reorganizes its gene expression, including genes involved in virulence and metabolism, to exploit the host cell. These findings may lead to the development of new strategies to combat bacterial infection.

"The next steps include mapping in detail the genes that change their expression upon attachment, and describing the precise effects of this expression remodeling," said Prof. Ilan Rosenshine. "Another important issue is testing whether similar regulation is involved in the infection processes of other pathogens."
-end-


The Hebrew University of Jerusalem

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...