Nav: Home

Simple rule predicts when an ice age ends

February 22, 2017

A simple rule can accurately predict when Earth's climate warms out of an ice age, according to new research led by UCL.

In a new study published today in Nature, researchers from UCL (University College London), University of Cambridge and University of Louvain have combined existing ideas to solve the problem of which solar energy peaks in the last 2.6 million years led to the melting of the ice sheets and the start of a warm period.

During this interval, Earth's climate has alternated between cold (glacial) and warm (interglacial) periods. In the cold times, ice sheets advanced over large parts of North America and northern Europe. In the warm periods like today, the ice sheets retreated completely.

It has long been realised that these cycles were paced by astronomical changes in the Earth's orbit around the Sun and in the tilt of its axis, which change the amount of solar energy available to melt ice at high northern latitudes in summer.

However, of the 110 incoming solar energy peaks (about every 21,000 years) only 50 led to complete melting of the ice sheets. Finding a way to translate the astronomical changes into the sequence of interglacials has previously proved elusive.

Professor Chronis Tzedakis (UCL Geography) said: "The basic idea is that there is a threshold for the amount of energy reaching high northern latitudes in summer. Above that threshold, the ice retreats completely and we enter an interglacial."

From 2.6 to 1 million years ago, the threshold was reached roughly every 41,000 years, and this predicts almost perfectly when interglacials started and the ice sheets disappeared. Professor Eric Wolff (University of Cambridge) said: "Simply put, every second solar energy peak occurs when the Earth's axis is more inclined, boosting the total energy at high latitudes above the threshold."

Somewhere around a million years ago, the threshold rose, so that the ice sheets kept growing for longer than 41,000 years. However, as a glacial period lengthens, ice sheets become larger, but also more unstable.

The researchers combined these observations into a simple model, using only solar energy and waiting time since the previous interglacial, that was able to predict all the interglacial onsets of the last million years, occurring roughly every 100,000 years.

Dr Takahito Mitsui (University of Louvain) said: "The next step is to understand why the energy threshold rose around a million years ago - one idea is that this was due to a decline in the concentration of CO2, and this needs to be tested."

The results explain why we have been in a warm period for the last 11,000 years: despite the weak increase in solar energy, ice sheets retreated completely during our current interglacial because of the very long waiting time since the previous interglacial and the accumulated instability of ice sheets.

Intriguingly, the researchers found that sometimes the amount of energy was very close to the threshold, so that some interglacials were just aborted, while others just made it. "The threshold was only just missed 50,000 years ago. If it hadn't been missed, then we wouldn't have had an interglacial in the last 11,000 years" added Professor Michel Crucifix (University of Louvain).

However, statistical analysis shows that the succession of interglacials is not chaotic: the sequence that has occurred is one among a very small set of possibilities. "Finding order among what can look like unpredictable swings in climate is aesthetically rather pleasing" said Professor Tzedakis.
-end-
Notes to Editors:

1.) For more information, copies of the paper, or interview requests please contact Ruth Howells in UCL Media Relations on mob: +44 (0)7990 675 947, email: ruth.howells@ucl.ac.uk

2.) The research paper 'A simple rule to determine which insolation cycles lead to interglacials' by P.C Tzedakis, M. Crucifix, T. Mitsui and E.W. Wolff, is published in Nature embargoed until Wednesday 22 February 2017, 1800 UK time (1300 US Eastern) doi: 10.1038/nature21364

University College London

Related Solar Energy Articles:

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
20 overlooked benefits of distributed solar energy
A study released today provides the most complete list yet of the advantages of solar energy -- from carbon sequestration to improvements for pollinator habitat.
Window film could even out the indoor temperature using solar energy
A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening.
Danish researchers create worldwide solar energy model
For any future sustainable energy system, it is crucial to know the performance of photovoltaic (solar cell) systems at local, regional and global levels.
More Solar Energy News and Solar Energy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...