Nav: Home

Study: Changing the environment within bone marrow alters blood cell development

February 22, 2017

CHAMPAIGN, Ill. -- Researchers at the University of Illinois report they can alter blood cell development through the use of biomaterials designed to mimic characteristics of the bone marrow.

The findings, reported in the journal Science Advances, are a first step toward developing more effective bone marrow treatments for diseases like leukemia and lymphoma.

Blood cells flow throughout the body delivering life-supporting oxygen and nutrients. As these cells are used and recycled they are regenerated by bone marrow, the soft tissue inside the body's long and hollow bones.

Certain regions of bone marrow contain hematopoietic stem cells, the precursors of all blood and immune cells, said University of Illinois chemical and biomolecular engineering professor Brendan Harley, who led the research with postdoctoral researcher Ji Sun Choi.

"The tissue environment that surrounds these cells in the bone marrow provides a wealth of signals that can alter how these precursor cells behave. This paper looked at the signals provided by the tissue matrix itself," said Harley, who also is affiliated with the Carl R. Woese Institute for Genomic Biology at the U. of I.

One of the major tools that oncologists use to treat leukemia and lymphoma involves transplanting HSCs. The donor stem cells must locate marrow cavities and start producing blood and immune cells. However, there is a limited quantity of available donor HSCs and the success rate of transplantation is low.

"We're interested in this problem from an engineering standpoint," Harley said. "The goal is to create better tools to both expand the number of donor HSCs and improve their capacity to repopulate the bone marrow after transplantation."

Like cells throughout the body, HSCs are contained in a three-dimensional tissue environment known as the extracellular matrix. Harley and Choi gathered samples of HSCs from mice and then grew them in the laboratory using biomaterials engineered to mimic some of the extracellular matrix properties of the native bone marrow. Their goal was to examine how these engineered systems could alter the HSCs' capacity to proliferate and differentiate to become blood cells.

The researchers examined two main elements of the matrix that regularly interact with HSCs: collagen and fibronectin. They found that the HSCs that were exposed to collagen proliferated more rapidly but that they had differentiated, meaning they were no longer stem cells. When exposed to fibronectin, the stem cells proliferated less rapidly, but were able to maintain their stem cell-like nature.

"With the collagen substrates, we got more cells but not useful cells," Harley said. "With the right combination of stiffness in the matrix and the presence of fibronectin, we identified a class of biomaterials that show promise for being able to maintain and eventually expand these stem cells outside of the body. An engineered bone marrow will be of enormous value for treating hematopoietic cancers such as leukemia, but also for understanding the process of bone marrow failure and other hematopoietic diseases."

This project is only the first step in controlling the signals from the matrix that influence HSCs, Harley said. He and other researchers in his lab are currently investigating other features of the matrix that can be manipulated to increase the number of stem cells and make them more effective in transplantation.
-end-
The National Science Foundation, National Institutes of Health and the American Cancer Society of Illinois supported this research.

Editor's notes:

To reach Brendan Harley, call 217-244-7112; email bharley@illinois.edu [MAILTO].

The paper "Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells" is available online and from the News Bureau.

DOI: 10.1126/sciadv.1600455

University of Illinois at Urbana-Champaign

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".