Nav: Home

Asthma drugs could prevent prevent deadly form of pneumonia, research suggests

February 22, 2017

Two drugs used to treat asthma and allergies may offer a way to prevent a form of pneumonia that can kill up to 40 percent of people who contract it, researchers at the University of Virginia School of Medicine have found.

Influenza pneumonia results when a flu infection spreads to alveolar air sacs deep within the lungs. Normally, a flu infection does not progress that far into the lower respiratory tract, but when it does, the results can be deadly. "If infection is severe enough, and the immune response is potent enough, you get injury to these cells and are no longer able to get sufficient oxygen exchange," explained UVA researcher Thomas J. Braciale, MD, PhD. "As a result of the infection of the cells, you can develop lethal pneumonia and die."

But early administration of the two asthma drugs, Accolate and Singulair, could prevent the infection of the alveolar cells deep in the lower respiratory tract, Braciale's research suggests. "The excitement of this is the possibility of someone coming to see the physician with influenza that looks a little more severe than usual and treating them with the drugs Singulair or Accolate and preventing them from getting severe pneumonia," he said. "The fatality rate from influenza pneumonia can be pretty high, even with all modern techniques to support these patients. Up to 40 percent. So it's a very serious problem when it occurs."

Ounce of Prevention

Unlike bacterial pneumonia, influenza pneumonia is caused by a virus. That makes it very difficult to treat - and makes the possibility of prevention all the more tantalizing.

"When we look at pandemic strains of influenza that have high mortality rates, one of the best adaptations of those pandemic viruses is their ability to infect these alveolar epithelial cells," explained researcher Amber Cardani, PhD. "It's one of the hallmarks for certain strains that cause the lethality in these pandemics."

Once influenza spreads deep into the lungs, the body's own immune response can prove harmful, resulting in severe damage to the alveolar air sacs. "It's an important observation the field is coming to," Cardani said. "We really need to limit the infection of these lower respiratory airways."

Stopping the Flu Virus

The researchers determined that the alveolar epithelial cells are typically protected from influenza infection by immune cells called alveolar macrophages. In some instances, however, the flu virus can prevent the macrophages from carrying out their protective function, allowing the epithelial cells to become vulnerable to infection. "It's not as though they lack alveolar macrophages, it's just that their alveolar macrophages don't work right when they get exposed to the flu," Braciale said. "And those are the types of patients, who potentially would eventually go to the intensive care unit, that we think could be treated early in infection with Accolate or Singulair to prevent infection of these epithelial cells and prevent lethal infection."

For their next steps, the researchers are consulting with colleagues to determine if patients being treated with Accolate and Singulair are less likely to develop influenza pneumonia during flu outbreaks.

"This was a totally unexpected observation," Braciale said. "When I told multiple colleagues who are infectious disease or pulmonary physicians, they were absolutely flabbergasted."
-end-
Findings Published

The findings have been published by the scientific journal PLOS Pathogens. It was written by Cardani, Adam Boulton, Taeg S. Kim and Braciale.

Braciale and Cardani are both part of UVA's Department of Microbiology, Immunology and Cancer Biology and UVA's Beirne B. Carter Center for Immunology Research. Braciale's primary appointment is with the Department of Pathology.

The work was supported by the National Institutes of Health, grant R01AI015608-35, and the NIH's National Institute of General Medical Sciences, grants T32 GM007055 and T32 GM007055.

University of Virginia Health System

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".