Nav: Home

Study says drugs could be developed cheaper and faster

February 22, 2017

Chemists at the University of Waterloo, SCIEX and Pfizer have discovered a new way to help the pharmaceutical industry identify and test new drugs, which could revolutionize drug development, and substantially reduce the cost and time drugs need to reach their market.

The study, published in the journal ACS Central Science, outlines a technique called differential mobility spectrometry (DMS) which analyzes drug molecules based on their response to an electrical field and the condensation-evaporation cycles the drug experiences in that field via a process, known as microsolvation.

"We can use this technique to measure drug properties in seconds to minutes with only nanograms of sample," says Scott Hopkins, a professor of chemistry at the University of Waterloo and corresponding author on the paper. "It's cost saving and high throughput, so you can test hundreds, even thousands of drugs quickly, increasing the rate of drug discovery."

Currently drug candidates are put through a battery of tests to measure their chemical and physical properties, such as how easily the drug crosses cell membranes, to predict how it will behave in the human body. Drugs must perform within a specific range in order to move forward to clinical trials. Most drugs fail the initial stages resulting in lost time and money.

"It takes time to grow cells and run replicate experiments to measure permeability," said Hopkins. "These kinds of assays are an arduous process, and the people that conduct this work are artists as well as scientists."

In contrast, these essential physical and chemical properties can be extracted all at once with a single analysis using DMS. The technique is so sensitive it can differentiate between the same drug molecules with slightly different atomic structures - something traditional testing methods cannot do.

"With this technology, the initial stages of drug development testing can be completed in hours rather than days," says Hopkins. "It's not only several orders of magnitude faster, it gives us information we never had access to before that we can use for rational drug design."

Beyond improving the testing and design drugs go through, Hopkins is hopeful this technology will improve the success of candidate drugs being proposed in the first place by informing the design process.
-end-


University of Waterloo

Related Chemistry Articles:

The chemistry of olive oil (video)
Whether you have it with bread or use it to cook, olive oil is awesome.
With more light, chemistry speeds up
Light initiates many chemical reactions. Experiments at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the University of Warsaw's Faculty of Physics have for the first time demonstrated that increasing the intensity of illumination some reactions can be significantly faster.
The chemistry of whiskey (video)
Derby Day means it's time to recognize the chemical process of distillation, which makes bourbon possible.
Restoration based on chemistry
Considered the pinnacle of mediaeval painting, the Ghent Altarpiece was painted around 1432 by Jan van Eyck and probably his brother Hubert.
The chemistry of redheads (video)
The thing that sets redheads apart from the crowd is pigmentation.
Scientists discover helium chemistry
The scientists experimentally confirmed and theoretically explained the stability of Na2He.
What might Trump mean for chemistry? (video)
Donald Trump is now the 45th president of the US.
Chemistry on the edge
Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe at Berkeley Lab.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Better chemistry through...chemistry
Award-winning UCSB professor Bruce Lipshutz is out to make organic chemistry better for the planet

Related Chemistry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".