Study says drugs could be developed cheaper and faster

February 22, 2017

Chemists at the University of Waterloo, SCIEX and Pfizer have discovered a new way to help the pharmaceutical industry identify and test new drugs, which could revolutionize drug development, and substantially reduce the cost and time drugs need to reach their market.

The study, published in the journal ACS Central Science, outlines a technique called differential mobility spectrometry (DMS) which analyzes drug molecules based on their response to an electrical field and the condensation-evaporation cycles the drug experiences in that field via a process, known as microsolvation.

"We can use this technique to measure drug properties in seconds to minutes with only nanograms of sample," says Scott Hopkins, a professor of chemistry at the University of Waterloo and corresponding author on the paper. "It's cost saving and high throughput, so you can test hundreds, even thousands of drugs quickly, increasing the rate of drug discovery."

Currently drug candidates are put through a battery of tests to measure their chemical and physical properties, such as how easily the drug crosses cell membranes, to predict how it will behave in the human body. Drugs must perform within a specific range in order to move forward to clinical trials. Most drugs fail the initial stages resulting in lost time and money.

"It takes time to grow cells and run replicate experiments to measure permeability," said Hopkins. "These kinds of assays are an arduous process, and the people that conduct this work are artists as well as scientists."

In contrast, these essential physical and chemical properties can be extracted all at once with a single analysis using DMS. The technique is so sensitive it can differentiate between the same drug molecules with slightly different atomic structures - something traditional testing methods cannot do.

"With this technology, the initial stages of drug development testing can be completed in hours rather than days," says Hopkins. "It's not only several orders of magnitude faster, it gives us information we never had access to before that we can use for rational drug design."

Beyond improving the testing and design drugs go through, Hopkins is hopeful this technology will improve the success of candidate drugs being proposed in the first place by informing the design process.

University of Waterloo

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to