Nav: Home

New method reveals how proteins stabilize the cell surface

February 22, 2017

To withstand external mechanical stress and handle trafficking of various substances, a cell needs to adjust its surrounding membrane. This is done through small indentations on the cell surface called caveolae. In order to stabilize its membrane, cells use the protein EHD2, which can be turned on and off to alternate between an inactive closed form and an active open form. The discovery, made by Umeå University researchers and colleagues, was recently published in the journal PNAS.

Caveolae play a key role when cells adjust to their surrounding environment. An absence of these small indentations is associated with severe diseases where muscles and fat cells disintegrate or where cells of the blood vessels are malfunctioning. In a collaboration involving a broad spectrum of biophysical, biochemical and cell biological analysis, researchers have identified the mechanistic cycle of the protein EHD2 and how it regulates the dynamics of caveolae on the cell membrane.

"The fact that the EHD2 protein helps the cells to adjust to their environment could be critically important for how caveolae affect the ability of muscle cells to repair or the absorption and storing abilities of fat cells," says Richard Lundmark, who is researcher at the Department of Integrative Medical Biology at Umeå University and corresponding author of the article.

The discovery was made by the research group of Richard Lundmark at the Department of Integrative Medical Biology and the Laboratory of Molecular Infection Medicine Sweden (MIMS), along with colleagues at Gothenburg University in Sweden and Albert-Ludwigs-Universität Freiburg and Martin Luther University Halle-Wittenberg in Germany.

The researchers demonstrate how the molecule ATP serves as a fuel allowing EHD2 to bind to the cell membrane and assume an open state where parts of the protein are inserted into the cell membrane. This position allows for the formation of so-called oligomers from the protein, which stabilizes the membrane in a fixed state. When the ATP-molecules have been spent, the protein is released from the membrane and assumes an inactive and closed state. The EHD2 protein's internal domains keeps it in this inhibited form when it is not in contact with a cell membrane.

"This research shows how the mechanistic cycle of EHD2 that we describe plays a key role for the caveolae's ability to stabilize cell membranes," says Richard Lundmark.

In the article, the researchers also describe how they used a new method based on the absorption and reflection of infrared light. Together with advanced analytics, this new method can be used to study structures of the membrane-bound states of proteins, which is difficult to achieve using other techniques. Using this method, the researchers were able to show the drastic conformational change in EHD2 when it binds to a membrane.
-end-
About the article:

PNAS, article: EHD2 restrains dynamics of caveolae by an ATP dependent, membrane-bound, open conformation. Authors: Hoernke M, Mohan J, Larsson E, Blomberg J, Kahra D, Westenhoff S, Schwieger C, and Lundmark R. DOI: 10.1073/pnas.1614066114.

For more information, please contact:

Dr. Richard Lundmark, Department of Integrative Medical Biology (IMB), Umeå University
Phone: +46 70 620 2464
Email: richard.lundmark@umu.se

Umea University

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".