Nav: Home

New neurons in the adult brain are involved in sensory learning

February 22, 2018

Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that could not be offered by the neurons generated shortly after birth? Scientists from the Institut Pasteur and the CNRS have demonstrated that the new neurons produced in adults react preferentially to reward-related sensory stimuli and help speed up the association between sensory information and reward. Adult-born neurons therefore play an important role in both the identification of a sensory stimulus and the positive value associated with that sensory experience. The neurons generated shortly after birth are unable to perform this function. These findings are published in the journal PNAS on February 19, 2018.

Although most neurons are generated during embryogenesis, some brain regions in mammals are capable of constantly regenerating their neurons in adulthood. The existence of these adult-born neurons has been proven, but many questions about their function and the way in which they integrate into their target areas remain unanswered.

Research carried out by the Perception and Memory team (Institut Pasteur/CNRS), directed by Pierre-Marie Lledo, a CNRS Director of Research, has recently revealed the specific role of these neurons produced in the adult brain. This study demonstrates that assigning positive values to sensory experiences is closely based on the activity of adult-born neurons, and not the neurons formed shortly after birth. It is these new neurons that may enable individuals to anticipate the delivery of a reward.

The scientists focused on the production of new neurons in adult mice, in particular those neurons that integrate into the olfactory bulb, the brain region responsible for analyzing odors. These new neurons are thought to play a major role in providing flexibility for learning and memorizing olfactory sensory experiences.

The scientists from the Institut Pasteur and the CNRS observed that the new neurons were able to react differently to an odor depending on the consequences associated with that sensory experience, such as whether or not there would be a reward. They also demonstrated that olfactory learning, in which the mice had to associate an odor with positive reinforcement, became easier once the new neurons had been activated. Finally, simply activating these adult-born neurons could be assimilated with a reward-predicting odor.

In short, this research shows that adult-born neurons are involved in the value associated with sensory stimuli rather than just the identification of the nature of a given sensory stimulus. It demonstrates that reward-motivated learning depends largely on adult neurogenesis.

Transferred to humans, these findings could improve our understanding of the role played by new neurons in the adult hippocampus in associative learning processes.
-end-


Institut Pasteur

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".