Nav: Home

New insight into how magma feeds volcanic eruptions

February 22, 2018

A novel research study by scientists at the University of Liverpool has provided new insights into how molten rock (magma) moves through the Earth's crust to feed volcanic eruptions.

Using laboratory experiments involving water, jelly and laser imaging, researchers were able to demonstrate how magma flows through the Earth's crust to the surface through magma-filled cracks called dykes.

This new approach to studying magma flow revealed that prior to a volcanic eruption there was recirculation of the fluid in the dyke and instability in the flow, details which had previously not been documented before.

Nearly all volcanic eruptions are fed by dykes that transport magma from its source to the surface. Understanding how magma travels through these dykes to the surface is central to forecasting the style, longevity and climatic impact of volcanic eruptions.

Researchers created a scaled-down model of an active volcanic plumbing system using a perspex tank filled with gelatine, representing the Earth's crust, and then injected this with dyed water, representing the magma.

They applied cutting-edge laser imaging techniques to look inside the model. Passive-tracer particles added to the fluid glowed in a laser sheet to allow the flow of the model magma to be mapped as the dyke grew.

Digital cameras recorded changes in the shape of the model volcanic plumbing system over time and the changes to the surface of the crust was recorded using an overhead laser scanner. Polarized light allowed subsurface stress patterns that would result in rock fracturing in nature to be observed as the dyke grew.

This novel experimental setup allowed, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during the magma ascent through magma-filled fractures.

This finding will help inform the interpretation of data from field studies and geophysical surveys, which will ultimately improve our ability to understand if an eruption is likely to happen.

Liverpool volcanologist, Dr Janine Kavanagh, who heads up the University's specialist MAGMA laboratory, said "For the first time, using innovative laboratory experiments that combined our knowledge of volcanic plumbing systems with engineering expertise, we have managed to see how magma flows through the Earth's crust to the surface through dykes.

"Our experiments, the first to use laser imaging technology in this way, revealed a strong coupling between surface deformation patterns and subsurface processes.

"This indicates that it is both the magma properties and the host rock properties that controls how the dyke ascends, which is a brand new finding and challenges our existing thinking on magma flow through rocks.

"As it's not possible to always successfully predict volcanic events due to the lack of complete knowledge of the signals leading to catastrophes, these results are an important new finding and ultimately we hope they will contribute to our understanding of where and when the next volcanic eruption will be."

With more than 800 million people worldwide living near a volcano at risk of eruptive activity, understanding the triggers for volcanic eruptions is vital for forecasting efforts, hazard assessment, and risk mitigation.

The paper 'Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism' is published in the Journal of Volcanology and Geothermal Research.
-end-
Notes to Editor:

1.The University of Liverpool is one of the UK's leading research institutions with an annual turnover of £523million. Liverpool is a member of the Russell Group. Visit http://www.liv.ac.uk or follow us on twitter at: http://www.twitter.com/livuninews

2.The University of Liverpool's Mechanical and Geological Model Analogues (MAGMA) Laboratory is a unique research facility that undertakes a range of geological analogue experiments. You can follow the research activities of the University of Liverpool's MAGMA lab on twitter @MAGMA_lab

3.Timeplapse video footage of the experiments are available to view.

University of Liverpool

Related Volcanic Eruptions Articles:

Oral traditions and volcanic eruptions in Australia
In Australia, the onset of human occupation (about 65,000 years?) and dispersion across the continent are the subjects of intense debate and are critical to understanding global human migration routes.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
Rare volcanic rocks lift lid on dangers of little-studied eruptions
Unusual rocks discovered on a remote mountainside have alerted scientists to the dangers posed by a little-studied type of volcano.
Revising the history of big, climate-altering volcanic eruptions
Researchers have developed a new isotopic method to analyze the recent history of large stratospheric volcanic eruptions, using 2,600 years' worth of records contained in ice cores from Antarctica. Stratospheric eruptions can launch sulfate particles more than 6 miles above Earth's surface, where they reflect sunlight and temporarily cool the planet.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
Using artificial intelligence to understand volcanic eruptions from tiny ash
Scientists led by Daigo Shoji from the Earth-Life Science Institute (Tokyo Institute of Technology) have shown that an artificial intelligence program called a Convolutional Neural Network can be trained to categorize volcanic ash particle shapes.
Repeating seismic events offer clues about Costa Rican volcanic eruptions
Repeating seismic events--events that have the same frequency content and waveform shapes--may offer a glimpse at the movement of magma and volcanic gases underneath Turrialba and Poas, two well-known active volcanoes in Costa Rica.
Detecting volcanic eruptions
Geophysicist Robin Matoza leads a case study of an eruption of Calbuco in Chile to evaluate data delivered by infrasound sensors
Mars' oceans formed early, possibly aided by massive volcanic eruptions
A new theory about how oceans and volcanoes interacted during the early history of Mars supports the idea that liquid water was once abundant and may still exist underground.
More Volcanic Eruptions News and Volcanic Eruptions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.