Nav: Home

Revealing the role of the mysterious small proteins

February 22, 2019

The human genome contains an estimated 20,000 genes coding for proteins. The proteins are the body's "workers", tasked with performing specific functions that are key to survival. Despite their importance, there is a type of very small proteins, with less than 100 amino acids, that are essential to understanding how living things work, and about which we know virtually nothing, since merely identifying them is a veritable technological challenge.

Now, however, investigators from the Centre for Genomic Regulation (CRG) of Barcelona, led by the ICREA Research Professor Luis Serrano, head of the Design of Biological Systems group, have developed a technique that can predict and classify these proteins based on a new bioinformatics tool into which they fed multiple -omic data. This enabled them to discover that these small proteins account for at least 16% of the bacterial genome. The findings of their work have been published in the journal Molecular Systems Biology.

"We studied the Mycoplasma pneumoniae bacteria and discovered that we could be overlooking up to 10 out of every 100 of the proteins coded in their reduced genome simply because they are so small", said María Lluch-Senar, staff scientist of the CRG and the study's principal investigator. "This percentage could be highly significant in the case of more complex or human organisms", she added.

Recent studies have shed some light on the importance of these small proteins, such as the antimicrobial peptides secreted by insects, animals, plants and even human beings in response to infection. These small proteins have also been shown to communicate with other bacteria in the environment and also with the host, such as our organism. In fact, they may play a very important role in having a balanced microbiota.

"The interest of our study lay in ascertaining the number and variety of functions that these hitherto disregarded proteins could present", explained Samuel Miravet-Verde, a PhD student at the CRG and the lead author of the work.

Hitherto, when a genome was annotated, only DNA segments which following transcription and translation could yield proteins with more than 100 amino acids were taken into account. Anything below this number was disregarded because of the technological challenge involved, since the usual approaches used to identify proteins are not possible precisely because they are so small. This is further complicated by the fact that these proteins tend to have a very short life, they are not abundant or they even present tissue- and time-specific expression patterns that render them even more difficult to detect.

Moreover, comparative conservation studies are normally performed in order to be able to assign functions to proteins, in which different organisms are taken and an attempt is made to ascertain the extent of their presence, compare the length of them both and define whether the similarity between them is or is not significant. As these small proteins cannot be identified, this approach cannot be employed to make comparisons between organisms, whereby their role remains a mystery.

In this research, the investigators conducted a preliminary study in 109 bacterial genomes in which they tried to classify or assign functions to these proteins. To this end, they applied algorithms already used in other settings, into which they input parameters related to the nature of a protein. They subsequently validated their findings by using proteins already identified in other bacterial species.

The technique they developed is universal and may be applied to different bacterial species.
-end-


Center for Genomic Regulation

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...