Nav: Home

Stopping inflammation from becoming chronic

February 22, 2019

Drugs such as ibuprofen or aspirin that relieve pain and lower fever are among the most frequently used drugs worldwide. They are used above all for the treatment of inflammatory reactions. However, in spite of their indisputable effectiveness and frequent use, we do not yet fully understand the underlying mechanisms of these drugs. In addition, when these drugs are taken, serious side effects occur and again, the causes of which have also not been sufficiently clarified.

The research team led by pharmacists Dr Jana Gerstmeier and Prof. Oliver Werz of the University of Jena has developed a cell model with which they can find answers to these questions. As the team's scientists report in the specialist publication, 'The FASEB Journal', they have succeeded in clarifying the complex effect of active compounds that are administered on the formation of endogenous signalling substances in immune cells during an inflammatory reaction (DOI: 10.1096/fj.201802509R). In the future, this will make it possible to develop new active drugs with fewer side effects. Working groups from Harvard Medical School in Boston and the Karolinska Institute in Stockholm were also involved in the research work.

Inflammation occurs in two phases

"Inflammation proceeds - roughly speaking - in two successive phases," explains Markus Werner, a doctoral student at the Chair of Pharmaceutical and Medical Chemistry of Jena University and first author of the study. During the initial phase, type 'M1' immune cells (macrophages) are active. They produce inflammatory messenger substances (prostaglandins and leukotrienes) from unsaturated fatty acids, which trigger typical symptoms such as fever and pain. After a few days, the second phase begins, in which the inflammation is resolved. In this phase, type 'M2' macrophages are active, which produce inflammation-resolving messenger substances from the fatty acids (called resolvins).

"Conventional drugs intervene equally in both phases," says Dr Jana Gerstmeier. "They reduce the production of both proinflammatory messenger substances and inflammation-resolving mediators." This alleviates the first acute inflammatory reaction, but at the same time it also hampers the second phase in which the inflammation resolves. "There is a risk of inflammation not being stopped and continuing to progress, so that secondary diseases occur." Ideally, drugs should therefore reduce only the acute phase, but not impair the phase in which the inflammation resolves.

The special feature of the methodology is its sensitivity

The newly developed cell model enables researchers to investigate the efficacy of drugs in both inflammatory phases. "For this purpose, we use human immune cells (M1 and M2), which we pre-treat with the drug to be tested before inducing an inflammatory reaction using pathogenic bacteria," explains Jana Gerstmeier. The messenger substances released by the cells are analysed.

The special feature of the methodology developed in Jena is its sensitivity: the inflammation-resolving substances of the second phase are effective in concentrations about 1,000 times lower than the inflammatory signal substances of the first inflammatory phase. Very sensitive analytics are required in order to be able to detect these substances, and the Jena laboratory is one of the few laboratories in the world to have mastered this methodology. Using a mass spectrometer, several dozen mediator molecules that have been released are detected and an individual spectrum is created for each active ingredient. This allows conclusions to be drawn about the influence of the drug on the entire inflammatory process.
-end-
Original publication:

Werner M, Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome, FASEB J. 33, 000-000 (2019), DOI: 10.1096/fj.201802509R, https://www.fasebj.org/doi/pdf/10.1096/fj.201802509R

Contact:

Dr Jana Gerstmeier
Institute of Pharmacy of Friedrich Schiller University, Jena
Philosophenweg 14, 07743 Jena, Germany
Tel.: +49 (0)3641 / 949801
E-mail: jana.gerstmeier@uni-jena.de

Friedrich-Schiller-Universitaet Jena

Related Immune Cells Articles:

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.