Nav: Home

New dynamic dependency framework may lead to better neural social and tech systems models

February 22, 2019

Many real-world complex systems include macroscopic subsystems which influence one another. This arises, for example, in competing or mutually reinforcing neural populations in the brain, spreading dynamics of viruses, and elsewhere. It is therefore important to understand how different types of inter-system interactions can influence overall collective behaviors.

In 2010 substantial progress was made when the theory of percolation on interdependent networks was introduced by Prof. Shlomo Havlin and a team of researchers from the Department of Physics at Bar-Ilan University in a study published in Nature. This model showed that when nodes in one network depend on nodes in another to function, catastrophic cascades of failures and abrupt structural transitions arise, as was observed in the electrical blackout that affected much of Italy in 2003.

Interdependent percolation, however, is limited to systems where functionality is determined exclusively by connectivity, thus providing only a partial understanding to a wealth of real-world systems whose functionality is defined according to dynamical rules.

Research has shown that two fundamental ways in which nodes in one system can influence nodes in another one are interdependence (or cooperation), as in critical infrastructures or financial networks, and antagonism (or competition), as observed in ecological systems, social networks, or in the human brain. Interdependent and competitive interactions may also occur simultaneously, as observed in predator-prey relationships in ecological systems, and in binocular rivalry in the brain.

In a paper published recently in Nature Physics, Bar-Ilan University Prof. Havlin, and a team of researchers, including Stefano Boccaletti, Ivan Bonamassa, and Michael M. Danziger, present a dynamic dependency framework that can capture interdependent and competitive interactions between dynamic systems which are used to study synchronization and spreading processes in multilayer networks with interacting layers.

"This dynamic dependency framework provides a powerful tool to better understand many of the interacting complex systems which surround us," wrote Havlin and team. "The generalization of dependent interactions from percolation to dynamical systems allows for the development of new models for neural, social and technological systems that better capture the subtle ways in which different systems can affect one another."

Prof. Havlin's research since 2000 has produced groundbreaking new mathematical methods in network science which have led to extensive interdisciplinary research in the field. Following Havlin's and his colleagues' publication of the theory of percolation, he received the American Physical Society's Lilienfeld Prize, which is awarded for "a most outstanding contribution to physics". Earlier this year he received the Israel Prize in Chemistry and Physics.

Bar-Ilan University

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".