New catalyst could enable better lithium-sulfur batteries, power next-gen electronics

February 22, 2021

At the heart of most electronics today are rechargeable lithium-ion batteries (LIBs). But their energy storage capacities are not enough for large-scale energy storage systems (ESSs). Lithium-sulfur batteries (LSBs) could be useful in such a scenario due to their higher theoretical energy storage capacity. They could even replace LIBs in other applications like drones, given their light weight and lower cost.

But the same mechanism that is giving them all this power is keeping them becoming a widespread practical reality. Unlike LIBs, the reaction pathway in LSBs leads to an accumulation of solid lithium sulfide (Li2S6) and liquid lithium polysulfide (LiPS), causing a loss of active material from the sulfur cathode (positively charged electrode) and corrosion of the lithium anode (negatively charged electrode). To improve battery life, scientists have been looking for catalysts that can make this degradation efficiently reversible during use.

In a new study published in ChemSusChem, scientists from Gwangju Institute of Technology (GIST), Korea, report their breakthrough in this endeavor. "While looking for a new electrocatalyst for the LSBs, we recalled a previous study we had performed with cobalt oxalate (CoC2O4) in which we had found that negatively charged ions can easily adsorb on this material's surface during electrolysis. This motivated us to hypothesize that CoC2O4 would exhibit a similar behavior with sulfur in LSBs as well," explains Prof. Jaeyoung Lee from GIST, who led the study.

To test their hypothesis, the scientists constructed an LSB by adding a layer of CoC2O4 on the sulfur cathode.

Sure enough, observations and analyses revealed that CoC2O4's ability to adsorb sulfur allowed the reduction and dissociation of Li2S6 and LiPS. Further, it suppressed the diffusion of LiPS into the electrolyte by adsorbing LiPS on its surface, preventing it from reaching the lithium anode and triggering a self-discharge reaction. These actions together improved sulfur utilization and reduced anode degradation, thereby enhancing the longevity, performance, and energy storage capacity of the battery.

Charged by these findings, Prof. Lee envisions an electronic future governed by LSBs, which LIBs cannot realize. "LSBs can enable efficient electric transportation such as in unmanned aircrafts, electric buses, trucks and locomotives, in addition to large-scale energy storage devices," he observes. "We hope that our findings can get LSBs one step closer to commercialization for these purposes."

Perhaps, it's only a matter of time before lithium-sulfur batteries power the world.
-end-
About Gwangju Institute of Science and Technology (GIST)

Gwangju Institute of Science and Technology (GIST) is a research-oriented university situated in Gwangju, South Korea. One of the most prestigious schools in South Korea, it was founded in 1993. The university aims to create a strong research environment to spur advancements in science and technology and to promote collaboration between foreign and domestic research programs. With its motto, "A Proud Creator of Future Science and Technology," the university has consistently received one of the highest university rankings in Korea.

Website: http://www.gist.ac.kr/

About the author

Dr. Jaeyoung Lee obtained his doctoral degree in Physical Electrochemistry from the Fritz-Haber-Institut der MPG & Fu Berlin, Germany, in 2001 under Dr. Gerhard Ertl, a 2007 Nobel Laureate. He is now a Professor in the School of Earth Sciences and Environmental Engineering and Vice Director of the Ertl Center for Electrochemistry and Catalysis at the Gwangju Institute of Science and Technology (GIST), Korea. He is interested in the designing, synthesis, and application of electrocatalysts for various energy and environmental sectors.

GIST (Gwangju Institute of Science and Technology)

Related Lithium Articles from Brightsurf:

Preventing lithium loss for high-capacity lithium-ion batteries
A team of Korean researchers has developed a processing technology for maximizing energy densities of high-capacity batteries.

Using Jenga to explain lithium-ion batteries
Tower block games such as Jenga can be used to explain to schoolchildren how lithium-ion batteries work, meeting an educational need to better understand a power source that has become vital to everyday life.

Powering the future with revolutionary lithium extraction technique
An international research team, led by Australia's Monash University, has pioneered and patented a new filtration technique that could one day slash lithium extraction times and change the way the future is powered.

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Using neutrons and X-rays to analyze the aging of lithium batteries
An international team has used neutron and X-ray tomography to investigate the dynamic processes that lead to capacity degradation at the electrodes in lithium batteries.

Can lithium halt progression of Alzheimer's disease?
In a new study, a team of researchers at McGill University has shown that, when given in a formulation that facilitates passage to the brain, lithium in doses up to 400 times lower than what is currently being prescribed for mood disorders is capable of both halting signs of advanced Alzheimer's pathology and of recovering lost cognitive abilities.

MTU engineers examine lithium battery defects
Lithium dendrites cause poor performance and even explosions in batteries with flammable liquid electrolytes.

New technology for pre-replenishing lithium for lithium ion supercapacitors
Li3N containing electrode is prepared by a commercially adoptable route, using DMF to homogenate the electrode slurry.

Towards new lithium-ion batteries that are safer and more efficient
Researchers have studied 2 types of cathodes that are very similar in their composition, but which show completely different behavior: one of them suffers from the known loss of energy density in the first charge cycle, while the other does not.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Read More: Lithium News and Lithium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.