Attachable skin monitors that wick the sweat away?

February 22, 2021

- A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. -

A new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports last month.

"Wearable bioelectronics are becoming more attractive for the day-to-day monitoring of biological compounds found in sweat, like hormones or glucose, as well as body temperature, heart rate, and energy expenditure," Professor Cho explained. "But currently available materials can cause skin irritation, so scientists are looking for ways to improve them," he added.

Attachable biosensors often use a silicone-based compound called polydimethylsiloxane (PDMS), as it has a relatively high water vapour transmission rate compared to other materials. Still, this rate is only two-thirds that of skin's water evaporation rate, meaning sweat still gets trapped underneath it.

Current fabrication approaches mix PDMS with beads or solutes, such as sugars or salts, and then remove them to leave pores in their place. Another technique uses gas to form pores in the material. Each technique has its disadvantages, from being expensive and complex to leaving pores of different sizes.

A team of researchers led by Professor Cho from the KAIST Department of Bio and Brain Engineering was able to form small, uniform pores by crystallizing citric acid in PDMS and then removing the crystals using ethanol. The approach is significantly cheaper than using beads, and leads to 93.2% smaller and 425% more uniformly-sized pores compared to using sugar. Importantly, the membrane transmits water vapour 2.2 times faster than human skin.

The team tested their membrane on human skin for seven days and found that it caused only minor redness and no itching, whereas a non-porous PDMS membrane did.

Professor Cho said, "Our method could be used to fabricate porous PDMS membranes for skin-attachable devices used for daily monitoring of physiological signals."

"We next plan to modify our membrane so it can be more readily attached to and removed from skin," he added.
-end-
This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) of Korea under the Alchemist Project.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Membrane Articles from Brightsurf:

A biomimetic membrane for desalinating seawater on an industrial scale
Reverse osmosis is one of the most widely used techniques for the desalination of water.

Lighting the way to selective membrane imaging
A team of scientists at Kanazawa University have shown how water-soluble tetraphenylethene molecules can become fluorescent when aggregating at a biomembrane-mimetic liquid-liquid interface.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

Using light's properties to indirectly see inside a cell membrane
Using properties of light from fluorescent probes is at the heart of a new imaging technique developed at Washington University's McKelvey School of Engineering that allows for an unprecedented look inside cell membranes.

Cells relax their membrane to control protein sorting
The tension in the membrane of cells plays an important role in a number of biological processes.

How are misfolded membrane proteins cleared from cells by "reubiquitinase"?
Chinese researchers recently discovered a protein quality control mechanism called ''reubiquitination'', which could promote the elimination of misfolded membrane proteins, minimize their dwell time in cells, and thereby reduce their probability to form toxic aggregates in human body.

Across the cell membrane
Aquaporins and glucose transporters facilitate the movement of substances across biological membranes and are present in all kingdoms of life.

First simulation of a full-sized mitochondrial membrane
Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes.

New self-forming membrane to protect our environment
A new class of self-forming membrane has been developed by researchers from Newcastle University, UK.

Cell membrane proteins imaged in 3D
A team of scientists including researchers at the National Synchrotron Light Source II have demonstrated a new technique for imaging proteins in 3D with nanoscale resolution.

Read More: Membrane News and Membrane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.