New technique reveals switches in RNA

February 22, 2021

Scientists at the University of Groningen (The Netherlands), in collaboration with colleagues from the University of Torino (Italy), have developed a method to visualize and quantify alternative structures of RNA molecules. These alternative RNA 'shapes' can have important functional relevance in viruses and bacteria. The researchers used an algorithm to rapidly analyse large quantities of chemically modified RNA molecules and calculate how many differently folded conformations were present. This technique was used to identify a conserved structural switch in the RNA of the SARS-CoV-2 virus. The results of this analysis were published in the journal Nature Methods on 22 February.

RNA molecules carry information in their nucleobase sequence that is needed to produce proteins. However, the molecules' 2D and 3D structures are also important. There are different ways in which the molecules can fold and some of these alternative conformations will affect the way in which the RNA functions. Riboswitches are a clear example: these are regulatory segments that are found in certain bacterial RNA molecules, the folding of which depends on the external environment and either allows or blocks translation of associated genes into proteins.

Mutations

Viral RNA also folds and the switch between alternative conformations can be important to the life cycle of a virus. 'Whenever you see a dynamic structure in the RNA, this suggests a regulatory system,' says Danny Incarnato, a molecular geneticist at the University of Groningen. 'So, we devised a method to find in experimental data whether an RNA can form different conformations.'

Single-stranded RNA molecules fold through the pairing of nucleobases. This pairing protects the bases from mutation by chemical modification. Therefore, the mutation technique can indicate which bases are unpaired. Reverse transcriptase is used to convert the modified RNA into DNA, which is then sequenced to detect the modified nucleobases, which will be 'read' as mutations. 'The process is not very efficient and, therefore, not all the unpaired bases will be mutated,' comments Incarnato. This means that analysing the mutations and inferring the conformations that they represent is complex. Adding to this is that the same site can fold in multiple ways. 'However, the number of theoretically possible folds is much higher than we see in reality,' says Incarnato. The trick is to find them.

Visual inspection

Several techniques have been proposed to calculate which folds are present in an RNA molecule and at what relative abundance. 'The idea is to see which mutations occur together in a particular region and which do not. This pattern points to alternative conformations.' The first proposed technique depended in part on visual inspection of the experimental data. A more recent system is fully automated, but Incarnato and his colleagues felt that it left room for improvement.

Incarnato: 'We created an algorithm that can rapidly analyse the huge number of reverse-transcribed RNA molecules.' In comparison to previously proposed systems, theirs requires less information to recognize alternative conformations and is less prone to overestimating the number of conformations. 'Our algorithm is more robust and very fast.'

Structurome

Finding regions in RNA molecules that can have different conformations, and are therefore potential switches, is important. Incarnato: 'It helps us to understand the "RNA structurome" and the effect it has on viruses and cells.' In a virus, switches would be targets for antiviral drugs. It is also possible that riboswitches turn out to be present in eukaryotic cells, and even in mammalian cells. 'Certain mutations that have so far been overlooked because they do not change the sequence of the encoded proteins can instead change the structure of the RNA molecule. Hence, they can play a major role in cancer.'

In the Nature Methods paper, 22 regions that form alternative conformations were identified in the SARS-CoV-2 genome. 'A cool thing is that in two preprints by other groups, some of these regions are confirmed using a different technique.' Incarnato and his colleagues find one of the potential switches extremely interesting: 'The two conformations involved in this switch are highly conserved among coronaviruses, which means that they are important. That makes them a perfect target for RNA-targeted antiviral drugs.'
-end-
Reference: Edoardo Morandi, Ilaria Manfredonia, Lisa M. Simon, Francesca Anselmi, Martijn J. van Hemert, Salvatore Oliviero and Danny Incarnato: Genome-scale deconvolution of RNA structure ensembles Nature Methods 22 February 2021

University of Groningen

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.