CABBI researchers challenge the CRP status quo to mitigate fossil fuels

February 22, 2021

Researchers at the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) found that transitioning land enrolled in the Conservation Reserve Program (CRP) to bioenergy agriculture can be advantageous for American landowners, the government, and the environment.

Land enrolled in the CRP cannot currently be used for bioenergy crop production, wherein high-yielding plants (like miscanthus and switchgrass) are harvested for conversion into marketable bioproducts that displace fossil fuel- and coal-based energy. Established by the U.S. Department of Agriculture in 1985, the CRP incentivizes landowners to retire environmentally degraded cropland, exchanging agricultural productivity for native habitats and accepting annual government payments in return.

As the world warms and its population explosively expands, global demand for food production is at odds with the decreased agricultural productivity threatened by extreme climate conditions. Therefore, allocating CRP land for high-yielding energy biomass might eliminate the need for bioenergy crops and food crops to vie for space.

A team led by CABBI Sustainability Theme Leader Madhu Khanna and Ph.D. student Luoye Chen developed an integrated modeling approach to assess the viability of transitioning CRP land in the eastern U.S. to perennial bioenergy crops. Their paper, published in Environmental Science & Technology in January 2021, confirmed that the land-use transition is indeed viable provided that certain key conditions are met.

"As proponents of a safer, more sustainable bioeconomy, we must prioritize displacing fossil fuels," said Khanna, who is also Acting Director of the Institute for Sustainability, Energy, and Environment (iSEE) at the University of Illinois Urbana-Champaign. "As scientists, it is our responsibility to take a thoughtful, innovative approach to mitigating greenhouse gases in a way that will prove beneficial in the long term.

"The transportation and electricity sectors are looking to expand bioenergy production, and it is imperative that the agricultural sector do the same. This necessitates a program wherein bioenergy cropland and food cropland coexist rather than compete."

The CABBI team takes an integrated approach to weighing the costs and benefits of swapping the CRP status quo -- uncultivated acreage -- for bioenergy, combining the Biofuel and Environmental Policy Analysis Model (BEPAM) with the biogeochemical model DayCent (Daily Time Step Version of the Century Model).

BEPAM assesses net profitability, answering the key question: What precise economic conditions will incentivize CRP landowners to make the switch to bioenergy cropland? An environmental counterpoint to BEPAM, DayCent simulates the full ecosystem effects of the transition on a given county, providing a "sneak peek" into the future and shedding light on how this land-use change might affect factors like crop yield, nutrient exchange, and soil carbon sequestration.

A key component of this study aggregates data from both models to formulate a greenhouse gas (GHG) life-cycle assessment, which calculates the total GHGs mitigated by the process as a whole -- from the physical act of planting to the introduction of clean energy into the bioeconomy.

"The full life-cycle assessment really is key to understanding the big-picture results of our research," Chen said. "We take everything into account -- the process of actually growing and harvesting the feedstocks, the carbon sequestered in the soil, and the fact that ultimately, we will be displacing fossil fuels with biofuels, and coal-based electricity with bioelectricity.

"Keeping that end result in mind anchors everything else to the ultimate goal of a net positive environmental impact."

The team concluded that converting 3.4 million hectares of CRP land to bioenergy from 2016 to 2030 is economically and environmentally viable -- under certain conditions.

Economically speaking, all systems are "go" if the market price of biomass is high and the government continues to distribute appropriate CRP land rental payments. These factors can ideally function as counterweights: If biomass prices decrease, substantial land rental payments may alleviate financial stress from farmers and encourage their continued commitment to bioenergy; alternatively, soaring biomass prices would rationalize relaxed government support, saving taxpayers money. The team identified two ideal pairings: 1) landowners receive 100 percent of their original government payments and sell biomass at $75/metric ton; or 2) landowners receive 75 percent of their original payment and sell biomass for $100/metric ton. Ideally, both parties benefit.

Converting CRP land to bioenergy can also result in substantial GHG savings. Previous studies show that a large "soil carbon debt" is liable to accrue at the outset of the venture, during the planting years of miscanthus and switchgrass. However, taking into account the full life-cycle assessment mentioned above, the research team determined that the long-term effects of displacing fossil fuel- and coal-based energy with bioproducts would more than make up for this temporary loss.

Considering landowner income from biomass sales, savings in government payments to maintain existing CRP enrollment, and the monetized benefits of GHG mitigation through displacing fossil fuels (quantified using the "social cost of carbon"), the total net value of converting CRP land to bioenergy could be as high as $28 billion to $125 billion over the 2016-2030 period.
-end-
In addition to Chen and Khanna, the team includes Postdoctoral Researcher Elena Blanc-Betes, CABBI and iSEE, University of Illinois Urbana-Champaign; Associate Professor Tara W. Hudiburg, CABBI, University of Idaho; Daniel Hellerstein, Economic Research Service, U.S. Department of Agriculture (USDA); Steven Wallander, Economic Research Service, USDA; and Professor Evan H. DeLucia, CABBI, iSEE, University of Illinois Urbana-Champaign.

University of Illinois at Urbana-Champaign Institute for Sustainability, Energy, and Environment

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.