Plants, animals share molecular growth mechanisms

February 23, 2005

WEST LAFAYETTE, Ind. - A newly discovered plant protein complex that apparently switches on plants' growth machinery, has opened a scientific toolbox to learn about both plant and animal development, according Purdue University scientists.

The protein complex triggers communication between molecules along a pathway that leads to the creation of long protein strings, called actin filaments, that are necessary for cellular growth, said Dan Szymanski, agronomy associate professor and lead author of the study. Knowledge of the biochemical reactions involved in this process eventually may allow researchers to design plants better able to protect themselves from insects and disease.

"These genes and their proteins are required for normal development and for normal cell-to-cell adhesion," Szymanski said. "They affect the growth of the whole plant and also the shape and size of types of cells in the plant."

Results of the study are published in the February issue of the journal The Plant Cell.

"Perhaps by learning about this pathway for actin filament formation, we can engineer plant cells to grow in different ways or alter how cells respond to external stimuli so they can defend themselves against insect or fungal attacks," Szymanski said.

A protein complex known as Actin Related Protein 2/3 (ARP2/3) is a cellular machine that controls formation of actin filaments, which are important for cell growth and movement. Actin filaments organize the inside of the cell and allow it to grow, and they determine where certain structures in a cell are positioned and how plants respond to gravity and light.

Szymanski's team used a deformed version of a common research plant, Arabidopsis thaliana, and specifically looked at small, hairlike structures that exist on most cells. They found that the shape and size of these hairs, or trichomes, readily show when genes affecting actin filaments are askew and causing altered growth.

The researchers previously had learned that a large protein complex, known as WAVE, activated ARP2/3, but they didn't know specifically which WAVE protein was the actual switch. Their latest research showed that a WAVE protein they've dubbed DISTORTED3 (DIS3) turns on APR 2/3, which in turn triggers formation of new, growing actin filaments.

Because some genes have survived through time as multicellular life evolved, they have been conserved in both plants and animals, Szymanski said. So, some of the plant proteins that comprise the ARP2/3 and the WAVE complexes are interchangeable with proteins in animals. Others proteins are not interchangeable, and Szymanski's research team is delving into how this affects the growth process.

"DIS3 has two ends that are common in both plant and animal proteins," he said. "But DIS3 has a very large segment in the middle that is specific to plants. We'd like to know if this section is important and whether it regulates DIS3 or the whole WAVE complex."

For growth and development biochemical processes to proceed normally, activators such as ARP 2/3 are needed to trigger actin filaments' formation and growth, Szymanski said. However, scientists don't know the specific function of certain actin filaments. The molecular tools Szymanski's research team developed will help scientists learn more about these functions in both plants and animals.

The other researchers on this study were Dipanwita Basu and Salah El-Din El-Essal, research assistants; postdoctoral students Jie Le, Chunhua Zhang and Gregore Koliantz; Eileen Malley, laboratory manager, all of the Department of Agronomy; and Shanjin Huang, postdoctoral student, and Christopher Staiger, professor, both of the Department of Biological Sciences. Staiger and Szymanski also are members of the Purdue Motility Group.
-end-
The Energy Biosciences Division of the Department of Energy, the USDA National Research Initiative and the Purdue Agricultural Research Program provided funding for this research.

Writer: Susan A. Steeves, 765-496-7481, ssteeves@purdue.edu

Source: Dan Szymanski, 765-494-8092, dszyman@purdue.edu

STORY AND PHOTO CAN BE FOUND AT: http://news.uns.purdue.edu/UNS/html4ever/2005/050223.Szymanski.filaments.html

Note to Journalists: A publication quality photo is available at http://ftp.purdue.edu/pub/uns/+2005/szymanski.trichome.jpg

Related Web sites:

Purdue Department of Agronomy: http://www.agry.purdue.edu/

Purdue Motility Group: http://www.biology.purdue.edu/research/groups/motility/index.htm

The Plant Cell: http://www.plantcell.org

DOE Office of Science: http://www.sc.doe.gov/

PHOTO CAPTION:

Malfunctioning genes that affect plant growth and development cause distortion in tiny hairs, called trichomes, that are found on most cells. Compared with normal plants, the trichome branch lengths are shorter and slightly twisted, and the base of the trichome is abnormally elongated and swollen. (Photo courtesy of Dan Szymanski)

A publication-quality photo is available at http://ftp.purdue.edu/pub/uns/+2005/szymanski.trichome.jpg

Purdue University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.