Nav: Home

UC researchers teach drones to land themselves on moving targets

February 23, 2017

The buzzword in drone research is autonomous -- having the unmanned aerial vehicle do most or all of its own flying.

It's the only realistic way that drones will have commercially viable uses such as delivering that roll of toilet paper to customers, said Manish Kumar, associate professor of mechanical engineering at the University of Cincinnati's College of Engineering and Applied Science.

Kumar and his co-authors, Nicklas Stockton, a UC researcher, and Kelly Cohen, aerospace engineering professor, considered the difficulty drones have in navigating their ever-changing airspace in a study presented at the American Institute of Aeronautics and Astronautics SciTech 2017 Conference in January.

This problem is compounded when the drone tries to land on a moving platform such as a delivery van or even a U.S. Navy warship pitching in high seas.

"It has to land within a designated area with a small margin of error," Kumar said. "Landing a drone on a moving platform is a very difficult problem scientifically and from an engineering perspective."

To address this challenge, UC researchers applied a concept called fuzzy logic, the kind of reasoning people employ subconsciously every day.

While scientists are concerned with precision and accuracy in all they do, most people get through their day by making inferences and generalities, or by using fuzzy logic. Instead of seeing the world in black and white, fuzzy logic allows for nuance or degrees of truth.

"In linguistic terms, we say large, medium and small rather than defining exact sets," he said. "We want to translate this kind of fuzzy reasoning used in humans to control systems."

Fuzzy logic helps the drone make good navigational decisions amid a sea of statistical noise, he said. It's called "genetic-fuzzy" because the system evolves over time and continuously discards the lesser solutions.

Stockton, Kumar and Cohen successfully employed fuzzy logic in a simulation to show it is an ideal system for navigating under dynamic conditions. Stockton, an engineering master's student who was lead author on the paper, is putting fuzzy logic to the test in experiments to land quadcopters on robots mounted with landing pads at UC's UAV Multi-Agent System Research (MASTER) Lab.

"This landing project is a real-world problem. A delivery vehicle could have a companion drone make deliveries and land itself," Stockton said.

Stockton is just the latest UC student mentored by Cohen who was offered a job, at least in part, for his experience in fuzzy logic. The U.S. Air Force offered Stockton a federal position to continue his engineering research at Wright-Patterson Air Force Base when he graduates this summer.

UC doctoral graduate Nick Ernest, another student of Cohen's, started an artificial intelligence company called Psibernetix, Inc., that demonstrated the power of fuzzy logic last year when a fuzzy-logic-based artificial intelligence, dubbed ALPHA, bested a human fighter pilot in simulated dogfights.

Retired U.S. Air Force Col. Gene Lee called ALPHA, "the most aggressive, responsive, dynamic and credible AI I've seen to date."

Professor Cohen is confident about the team's approach.

"Compared to other state-of-the-art techniques of adaptive thinking and deep learning, our approach appears to possess several advantages. Genetic fuzzy is scalable, adaptable and very robust," Cohen said.

Cohen has authored more than 100 papers on fuzzy logic, a subject that is attracting increasing attention because of its broad applications in everything from manufacturing to medicine.

UC is a world leader in fuzzy logic and teaches it at the undergraduate level, Cohen said.

"It's important to introduce our students at an early stage to fuzzy approaches as it also provides them with an advantage as they enter the job market," Cohen said.
-end-
The research was funded by a $500,000 grant from the National Science Foundation.

University of Cincinnati

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.