Study tracks evolutionary transition to destructive cancer

February 23, 2018

Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure--cornerstones of Darwin's theory--are the means by which organisms gain an advantageous foothold or pass into oblivion.

In a new study, researchers at ASU's Biodesign Institute led an international team to explore how evolutionary processes guide the pathways of cells. Their results, which appear in the advanced online edition of the journal Nature Communications, point to influences leading some cells to remain stable over time while driving others to become cancerous and expand without limit.

The new research focuses on a condition known as Barrett's Esophagus (BE). The disease, which affects over three million Americans, causes cells lining the throat to change shape from their normal form (known as squamous epithelia) to a pathological cell type (known as columnar epithelia).

A small number of BE patients--just .2 percent per year--will go on to develop a highly lethal, treatment-resistant cancer, known as Esophageal Adenocarcinoma (EAC). Despite advances in therapy, prospects for EAC patients remain bleak--fewer than 15 percent survive beyond 5 years. (While the incidence of EAC in the United States has remained low, it has risen alarmingly in recent years.)

Understanding why most BE patients avoid this fate and some don't has been a challenge for the medical community. Evolutionary oncologists like Carlo Maley, a researcher at the Biodesign Center for Personalized Diagnostics and a senior author of the new study, believe a better understanding of the evolutionary dynamics of this process may hold the key. The study examines these dynamics over at least 6 years of surveillance. Of the 8 BE patients examined, 4 remain stable and 4 progress to cancer.

"By taking a host of minute samples across the surface of the esophagus, and across many years while these patients were under surveillance to detect cancer, we had an unprecedented view of the dynamics of carcinogenesis," Maley says.

Sensing the threat

BE presents a conundrum for clinicians. The condition is a risk factor for developing a deadly, highly intractable cancer but only a tiny proportion of BE patients will progress to cancer. Because no reliable means exist at present to distinguish progressors from non-progressors, the only cautionary measures available involve repeated surveillance of BE esophageal cells through endoscopy and biopsy to try to catch EAC-linked abnormalities at an early stage, or methods to burn away the lining of the esophagus.

Such invasive, expensive and often unnecessary screening and interventions result in over-diagnosis and over treatment, while surveillance of esophageal cells on a population-wide basis is impractical. Clearly, a more reliable approach is needed--one that can ferret out those BE patients most likely to advance to EAC.

As the authors note, better predictions will rely in part on testing BE samples at multiple points in time, and an examination of cells extracted from different locations in the esophageal tissue. One positive consequence of aggressive BE cell surveillance is that it has provided researchers with a rich library of data that can be mined using new methods in order to tease out critical factors governing progression vs non-progression to cancer.

Disease origins

Barrett's Esophagus can develop over time when digestive acid backs up from the stomach into the esophagus, causing damage and growth of precancerous cells. To accurately assess the evolutionary dynamics involved in progression to cancer, researchers need more fine-grained analyses of BE cells, to tease out details that may not be detectable in whole biopsies containing millions of cells.

In BE, the columnar architecture of the epithelium is similar to that of the intestine. Here, well-like structures in the tissue known as crypts appear. At the base of those crypts are stem cells, which replenish the epithelium as older cells migrate up the sides of the crypts and then die off. The study represents the first genome-wide analysis of the evolutionary dynamics in BE at the level of individual crypts. (While crypts may contain more than a single stem cell, these cells tend to be genetically uniform. For this reason, crypt sampling is closely analogous to sampling single BE cells.)

Researchers would like to know why most cases of BE appear to be evolutionarily static over time. Either genetic alterations tend to be rare or, if they are common, cells carrying those alterations do not expand to levels detectable through conventional biopsy. The new study examines the genomes of single crypts in BE to take a closer look at when and where genetic variants arise and how the evolutionary process plays out.

Ominous progression

Advancement from BE to EAC is a process characterized by mounting genomic instability. Over time, BE patients can accumulate mutations in their esophageal lesions, altering the genetic makeup of these cells. Such genetic variation is regarded as a valuable predictor of progression to cancer, though the highly complex dynamics of this process are still being worked out.

The study focused on losses and gains of large regions of chromosomes in the BE cells. Aberrations in the chromosomes are high in those who go on to develop EAC, even 4 years before progression and remain low in non-progressors, pointing to the value of chromosomal diversity as a diagnostic indicator.

The study also examined a phenomenon known as genome doubling. This results from faulty cell division, which creates a cell with twice the normal number of chromosomes. Those likely to progress to EAC were also more likely to experience genome doubling, which is presaged by an increasing rate of accumulation of chromosomal aberrations.

The study examines genetic variation in BE crypts, comparing these with the variation found through examination of biopsies. Multiple biopsies and crypt samples were examined from 8 BE patients at two different time points. Four of these patients progressed to EAC and 4 did not.

Results comparing biopsy and single crypt information show that genetic alterations are indeed rare, even at the crypt level, and that Barrett's lesions tend to arise from a single ancestral cell gone awry. Further, the study selects cells from different regions of the esophagus and finds that genetic alterations were more common in samples taken near the base of the esophagus, known as the gastro-esophageal junction.

New findings

The study addresses five previously unanswered questions concerning BE. As the authors stress, the results offer new insights into the general process of cell progression to cancer, which may be applicable across many, if not all forms of the disease.

Results indicate that Continued work in this area promises to untangle the complex network of evolutionary factors at play when cells are directed away from their normal course and toward the fateful path of cancer.
-end-
Written by: Richard Harth
Senior Science Writer: Biodesign Institute
richard.harth@asu.edu

Arizona State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.