Nav: Home

Combating sulphuric acid corrosion at wastewater plants

February 23, 2018

Wastewater systems are integral to infrastructure in every community. In an ideal world, they operate smoothly and are long-lasting. But biogenic transformation processes in sewage and water treatment systems are a "natural enemy" of conventional plants, frequently causing damage to concrete and metal elements that is expensive to repair. As a result, it is not uncommon for wastewater systems to have a lifespan of under ten years, before they need to be refurbished or individual components replaced. Toxic gases released during biogenic processes, such as hydrogen sulphide, also pose a significant health risk, causing a range of symptoms from irritation to respiratory failure and death.

Writing in the journal Water Research, an interdisciplinary group of researchers from TU Graz and the University of Graz has outlined strategies aimed at preventing what is termed microbial induced concrete corrosion (MICC). The research team comprises two TU Graz staff members - Cyrill Grengg of the Institute of Applied Geosciences and Florian Mittermayr of the Institute of Technology and Testing of Construction Materials - as well as Günther Koraimann of the University of Graz's Institute of Molecular Biosciences.

Microbial induced concrete corrosion: turning a blind eye not the answer

Cyrill Grengg of the Institute of Applied Geosciences at TU Graz explained: "MICC often corrodes the conventional types of concrete used in wastewater treatment plants at a rate of a centimetre or more per year. Accordingly, the concrete elements can be destroyed in a matter of only a few years, causing significant damage to wastewater systems." According to the researchers, there is often a lack of awareness of these processes and the resulting threat to wastewater infrastructure and human health. "Closing the manhole covers and looking the other way is not the answer," Grengg added. In Germany alone, the economic impact of wastewater system repairs is put at around EUR 450 million per year. Although no data are currently available for Austria, the costs can be extrapolated and also applied to other European countries.

Microbial induced acid corrosion (MICC) in wastewater treatment facilities results from a sequence of biogenic sulphate reduction reactions, followed by reoxidation. Initially, sulphate in pressure pipelines or standing wastewater is reduced by bacteria under anaerobic - or oxygen-free - conditions, forming hydrogen sulphide. This pungent, highly poisonous gas escapes into the sewer air and diffuses into sewer pipes and manholes. There reoxidation by autotrophic bacteria takes place on concrete walls that do not even come into contact with wastewater. These microorganisms produce sulphuric acid which reacts with concrete construction elements. As Günther Koraimann of the Institute of Molecular Biosciences at the University of Graz, who has studied these processes in detail, explains: "This leads to the vigorous formation of a biofilm on the surface of the concrete, a reduction of the pH value to below two, in other words highly acidic, and extensive formation of new minerals, mainly in the form of gypsum. The combination of these processes results in the rapid destruction of the concrete."

Holistic solution

The Graz-based scientists worked on a holistic solution using an interdisciplinary research approach. In-depth research into the microstructural and microbiological processes was followed by the development of new MICC-resistant materials in close collaboration with the Institute of Construction and Building Materials at TU Darmstadt. In this context, geopolymer concrete proved to be particularly well suited to withstand acid corrosion. When developing this building material, resistance to acid was an extremely desirable property, as were highly antibacteriostatic surfaces, on which the research team made significant advances - microorganisms that trigger the initial oxidation process are unable to settle on such surfaces in the first place. In turn, this prevents the formation of sulphuric acid. Florian Mittermayr of the Institute of Technology and Testing of Construction Materials at TU Graz commented: "We achieved some very promising results with materials that have a far greater lifespan than conventional types of concrete. Use of these long-lasting materials would allow operators to refurbish damaged wastewater systems, significantly extending their service life and reducing the financial burden on local government and wastewater associations." The researchers published their latest findings on MICC prevention in the current issue of the journal Water Research 134 (2018) 341 - 352: "Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review."

The Austrian province of Styria provided financial backing for the research, and is dedicated to raising awareness of this global problem among Styrian local authorities and regional wastewater associations.
-end-
Contact

Dr. Cyrill GRENGG
Institute of Applied Geosciences | TU Graz
Rechbauerstrasse 12, 8010 Graz, Austria
Mobile: +43 680 3169642
Tel. +43 316 873 6366
cyrill.grengg@tugraz.at

Dr. Florian MITTERMAYR
Institute of Technology and Testing of Construction Materials | TU Graz
Inffeldgasse 24, 8010 Graz, Austria
Tel. +43 316 873 7159
f.mittermayr@tugraz.at

Günther Koraimann
Associate Professor Dr.
Institute of Molecular Biosciences | University of Graz
Humboldtstrasse 50, 8010 Graz, Austria
Tel. +43 316 380 5626
guenther.koraimann@uni-graz.at

Graz University of Technology

Related Wastewater Articles:

Bacteria-coated nanofiber electrodes clean pollutants in wastewater
Cornell University researchers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
Bacteria may supercharge the future of wastewater treatment
Wastewater treatment plants have a PR problem: People don't like to think about what happens to the waste they flush down their toilets.
Wastewater injection rates may have been key to Oklahoma's largest earthquake
Changes to the rate of wastewater injection in disposal wells may have contributed to conditions that led to last year's Pawnee earthquake in Oklahoma, according to a new report published May 3 as part of a focus section in Seismological Research Letters.
'Peeling the onion' to get rid of odors near wastewater treatment plants
Nuisance smells from sewage and wastewater treatment facilities are a worldwide problem.
Wastewater cleaned thanks to a new adsorbent material made from fruit peels
Researchers from the University of Granada, and from the Center for Electrochemical Research and Technological Development and the Center of Engineering and Industrial Development, both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.
Wastewater treatment upgrades result in major reduction of intersex fish
Upgrades to a wastewater treatment plant along Ontario's Grand River, led to a 70 per cent drop of fish that have both male and female characteristics within one year and a full recovery of the fish population within three years, according to researchers at the University of Waterloo.
Wastewater research may help protect aquatic life
New wastewater system design guidelines developed at UBC can help municipal governments better protect aquatic life and save millions of dollars a year.
Germs in wastewater often become airborne
Using household wastewater to irrigate food crops in drought-stricken or arid regions isn't the perfect solution.
CU Boulder engineers transform brewery wastewater into energy storage
University of Colorado Boulder engineers have developed an innovative bio-manufacturing process that uses a biological organism cultivated in brewery wastewater to create the carbon-based materials needed to make energy storage cells.
Blending wastewater may help California cope with drought
Researchers at UC Riverside have developed an economic model that demonstrates how flexible wastewater treatment processes which blend varying levels of treated effluent can create a water supply that benefits crops and is affordable.

Related Wastewater Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".