Nav: Home

Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

February 23, 2018

Jupiter's icy moon Europa is a major target of astrobiology research in light of the possibility that it offers a habitable environment in the Solar System. Under its ice crust, estimated to be 10 km thick, is an ocean of liquid water of over 100 km deep. A huge source of energy deriving from gravitational interaction with Jupiter keeps this water warm.

Theoretical research to evaluate the microbial habitability of Europa using data collected from analogous environments on Earth has been conducted by a group of Brazilian researchers linked to the University of São Paulo (USP) that jointly signed an article published in Scientific Reports.

"We studied the possible effects of a biologically usable energy source on Europa based on information obtained from an analogous environment on Earth," said Douglas Galante, a researcher at Brazil's National Synchrotron Light Laboratory (LNLS) and the Astrobiology Research Center (NAP-Astrobio) of the University of São Paulo's Institute of Astronomy, Geophysics & Atmospheric Sciences (IAG-USP).

Galante coordinates the study, supported by the São Paulo Research Foundation - FAPESP through a Master's fellowship from chemist Thiago Pereira, co-author of the article who has in Galante his supervisor, and through a Thematic Project which aims at investigating places in Brazil and Africa with possible vestiges of geochemical and isotopical transformations related to the emergence of multicelular life in Neoproterozoic Age.

Similarities with primitive earth

In the Mponeng gold mine near Johannesburg, South Africa, at a depth of 2.8 km, the research project not only found traces of major changes linked to history of life on Earth, but also a terrestrial contexto analogous to Europa. It was recently discovered that the bacterium Candidatus Desulforudis audaxviator survives inside the mine without sunlight by means of water radiolysis, the dissociation of water molecules by ionizing radiation.

"This very deep subterranean mine has water leaking through cracks that contain radioactive uranium," Galante said. "The uranium breaks down the water molecules to produce free radicals [H+, OH-, and others]. The free radicals attack the surrounding rocks, especially pyrite [iron disulfide, FeS2], producing sulfate. The bacteria use the sulfate to synthesize ATP [adenosine triphosphate], the nucleotide responsible for energy storage in cells. This is the first time an ecosystem has been found to survive directly on the basis of nuclear energy."

According to Galante and colleagues, the environment colonized by bacteria in the Mponeng mine is an excellent analogue of the environment assumed to exist at the bottom of Europa's ocean.

Although the temperature in Europa's surface is next to absolute zero, there is an enormous amount of thermal energy in its core, as an effect of Europa's interaction with Jupiter's powerful gravitational attraction, which causes the satellite's orbit to be extremely elliptical, meaning Europa finds itself either to close or too far from the Gas Giant. That makes the icy moon to suffer geometrical deformation as it moves at the mercy of Jupiter's immense tidal force. The energy released by the alternating states of elongation and relaxation makes Europa's subsurface capable of hosting an ocean of liquid water.

"However, it's not enough for there to be heated liquid water", said Galante. According to the researcher, the basis for all biological activity known to Earth are the chemical gradients, i.e., differences in concentrations of molecules, ions or electrons in distinct regions which produce a flow in a certain direction, allowing the occurrence of cellular respiration, photosynthesis, ATP production and other processes common to living beings.

"Hydrothermal emanations - of molecular hydrogen [H2], hydrogen sulfide [H2S], sulfuric acid [H2SO4], methane [CH4] and so on - are important sources of chemical imbalance and potential factors of 'biological transduction', i.e., transformation of the imbalance into biologically useful energy," Galante said. "These hydrothermal sources are the most plausible scenario for the origin of life on Earth."

Investigating conditions in Europa for ATP production

The group evaluated how chemical imbalance in Europa could be initiated through the emanation of water leading to chain reactions between water and chemical elements found in Europa's crust - however, a total lack of empirical data prevents scientists from unequivocally presuming any of these events (an "Europa Mission" may take place as late as 2030, stated Nasa, the US space agency). "That's why we looked for a more universal physical effect that was highly likely to occur. That effect was precisely the action of radioactivity", Galante said.

Celestial bodies in the Solar System with rocky cores share the same radioactive materials, ejected in space by the Supernova explosion that originated the Sun and the planets. Uranium, thorium and potassium are the radioactive elements considered by the research, which estimated the concentrations for these materials in Europa, based on the quantities already observed and measured on Earth, in meteorites and in Mars.

"From these amounts, we were able to estimate the energy released, how this energy interacts with the surrounding water, and the efficiency of the water radiolysis resulting from this interaction in generating free radicals," Galante said.

According to the study, along with radionuclides, pyrite is a crucial ingredient whose presence is indispensable for life in Europa. "One of the proposals deriving from our study is that traces of pyrite should be looked for as part of any assessment of the habitability of a celestial body," stated Galante. Chances for finding pyrite in a hypothetical mission to Europa are good, since sulfur (S) and iron (Fe) are elements found in abundance across the Solar System.

"The ocean bed on Europa appears to offer very similar conditions to those that existed on primitive Earth during its first billion years. So studying Europa today is to some extent like looking back at our own planet in the past. In addition to the intrinsic interest of Europa's habitability and the existence of biological activity there, the study is also a gateway to understanding the origin and evolution of life in the Universe."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. For more information: http://www.fapesp.br/en.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".