Nav: Home

Deep learning reconstructs holograms

February 23, 2018

Deep learning has been experiencing a true renaissance especially over the last decade, and it uses multi-layered artificial neural networks for automated analysis of data. Deep learning is one of the most exciting forms of machine learning that is behind several recent leapfrog advances in technology including for example real-time speech recognition and translation as well image/video labeling and captioning, among many others. Especially in image analysis, deep learning shows significant promise for automated search and labeling of features of interest, such as abnormal regions in a medical image.

Now, UCLA researchers have demonstrated a new use for deep learning: this time to reconstruct a hologram and form a microscopic image of an object. In a recent article that is published in Light: Science & Applications, a journal of the Springer Nature, UCLA researchers have demonstrated that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach provides a fundamentally new framework to conduct holographic imaging and compared to existing approaches it is significantly faster to compute and reconstructs improved images of the objects using a single hologram, such that it requires fewer measurements in addition to being computationally faster.

This research was led by Dr. Aydogan Ozcan, an associate director of the UCLA California NanoSystems Institute and the Chancellor's Professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science, along with Dr. Yair Rivenson, a postdoctoral scholar, and Yibo Zhang, a graduate student, both at the UCLA electrical and computer engineering department.

The authors validated this deep learning based approach by reconstructing holograms of various samples including blood and Pap smears (used for screening of cervical cancer) as well as thin sections of tissue samples used in pathology, all of which demonstrated successful elimination of spatial artifacts that arise from the lost phase information at the hologram recording process. Stated differently, after its training the neural network has learned to extract and separate the spatial features of the true image of the object from undesired light interference and related artifacts. Remarkably, this deep learning based hologram recovery has been achieved without any modeling of light-matter interaction or a solution of the wave equation. This is an exciting achievement since traditional physics-based hologram reconstruction methods have been replaced by a deep learning based computational approach, said Rivenson.

These results are broadly applicable to any phase recovery and holographic imaging problem, and this deep learning based framework opens up a myriad of opportunities to design fundamentally new coherent imaging systems, spanning different parts of the electromagnetic spectrum, including visible wavelengths as well as the X-ray regime, added Ozcan, who is also an HHMI Professor with the Howard Hughes Medical Institute.
Other members of the research team were Harun Günayd?n and Da Teng, members of the Ozcan Research Lab at UCLA.

Ozcan's research is supported by a Presidential Early Career Award for Scientists and Engineers, the Army Research Office, the National Science Foundation, the Office of Naval Research, the National Institutes of Health, the Howard Hughes Medical Institute, the Vodafone Americas Foundation, the Mary Kay Foundation and the Steven and Alexandra Cohen Foundation.

Changchun Institute of Optics, Fine Mechanics and Physics

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...