Deep learning reconstructs holograms

February 23, 2018

Deep learning has been experiencing a true renaissance especially over the last decade, and it uses multi-layered artificial neural networks for automated analysis of data. Deep learning is one of the most exciting forms of machine learning that is behind several recent leapfrog advances in technology including for example real-time speech recognition and translation as well image/video labeling and captioning, among many others. Especially in image analysis, deep learning shows significant promise for automated search and labeling of features of interest, such as abnormal regions in a medical image.

Now, UCLA researchers have demonstrated a new use for deep learning: this time to reconstruct a hologram and form a microscopic image of an object. In a recent article that is published in Light: Science & Applications, a journal of the Springer Nature, UCLA researchers have demonstrated that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach provides a fundamentally new framework to conduct holographic imaging and compared to existing approaches it is significantly faster to compute and reconstructs improved images of the objects using a single hologram, such that it requires fewer measurements in addition to being computationally faster.

This research was led by Dr. Aydogan Ozcan, an associate director of the UCLA California NanoSystems Institute and the Chancellor's Professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science, along with Dr. Yair Rivenson, a postdoctoral scholar, and Yibo Zhang, a graduate student, both at the UCLA electrical and computer engineering department.

The authors validated this deep learning based approach by reconstructing holograms of various samples including blood and Pap smears (used for screening of cervical cancer) as well as thin sections of tissue samples used in pathology, all of which demonstrated successful elimination of spatial artifacts that arise from the lost phase information at the hologram recording process. Stated differently, after its training the neural network has learned to extract and separate the spatial features of the true image of the object from undesired light interference and related artifacts. Remarkably, this deep learning based hologram recovery has been achieved without any modeling of light-matter interaction or a solution of the wave equation. This is an exciting achievement since traditional physics-based hologram reconstruction methods have been replaced by a deep learning based computational approach, said Rivenson.

These results are broadly applicable to any phase recovery and holographic imaging problem, and this deep learning based framework opens up a myriad of opportunities to design fundamentally new coherent imaging systems, spanning different parts of the electromagnetic spectrum, including visible wavelengths as well as the X-ray regime, added Ozcan, who is also an HHMI Professor with the Howard Hughes Medical Institute.
Other members of the research team were Harun Günayd?n and Da Teng, members of the Ozcan Research Lab at UCLA.

Ozcan's research is supported by a Presidential Early Career Award for Scientists and Engineers, the Army Research Office, the National Science Foundation, the Office of Naval Research, the National Institutes of Health, the Howard Hughes Medical Institute, the Vodafone Americas Foundation, the Mary Kay Foundation and the Steven and Alexandra Cohen Foundation.

Changchun Institute of Optics, Fine Mechanics and Physics

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to