Nav: Home

Inspired by nature: Design for new electrode could boost supercapacitors' performance

February 23, 2018

Mechanical engineers from the UCLA Henry Samueli School of Engineering and Applied Science and four other institutions have designed a super-efficient and long-lasting electrode for supercapacitors. The device's design was inspired by the structure and function of leaves on tree branches, and it is more than 10 times more efficient than other designs.

The electrode design provides the same amount of energy storage, and delivers as much power, as similar electrodes, despite being much smaller and lighter. In experiments it produced 30 percent better capacitance -- a device's ability to store an electric charge -- for its mass compared to the best available electrode made from similar carbon materials, and 30 times better capacitance per area. It also produced 10 times more power than other designs and retained 95 percent of its initial capacitance after more than 10,000 charging cycles.

Their work is described in the journal Nature Communications.

Supercapacitors are rechargeable energy storage devices that deliver more power for their size than similar-sized batteries. They also recharge quickly, and they last for hundreds to thousands of recharging cycles. Today, they're used in hybrid cars' regenerative braking systems and for other applications. Advances in supercapacitor technology could make their use widespread as a complement to, or even replacement for, the more familiar batteries consumers buy every day for household electronics.

Engineers have known that supercapacitors could be made more powerful than today's models, but one challenge has been producing more efficient and durable electrodes. Electrodes attract ions, which store energy, to the surface of the supercapacitor, where that energy becomes available to use. Ions in supercapacitors are stored in an electrolyte solution. An electrode's ability to deliver stored power quickly is determined in large part by how many ions it can exchange with that solution: The more ions it can exchange, the faster it can deliver power.

Knowing that, the researchers designed their electrode to maximize its surface area, creating the most possible space for it to attract electrons. They drew inspiration from the structure of trees, which are able to absorb ample amounts of carbon dioxide for photosynthesis because of the surface area of their leaves.

"We often find inspiration in nature, and plants have discovered the best way to absorb chemicals such as carbon dioxide from their environment," said Tim Fisher, the study's principal investigator and a UCLA professor of mechanical and aerospace engineering. "In this case, we used that idea but at a much, much smaller scale -- about one-millionth the size, in fact."

To create the branch-and-leaves design, the researchers used two nanoscale structures composed of carbon atoms. The "branches" are arrays of hollow, cylindrical carbon nanotubes, about 20 to 30 nanometers in diameter; and the "leaves" are sharp-edged petal-like structures, about 100 nanometers wide, that are made of graphene -- ultra thin sheets of carbon. The leaves are then arranged on the perimeter of the nanotube stems. The leaf-like graphene petals also give the electrode stability.

The engineers then formed the structures into tunnel-shaped arrays, which the ions that transport the stored energy flow through with much less resistance between the electrolyte and the surface to deliver energy than they would if the electrode surfaces were flat.

The electrode also performs well in acidic conditions and high temperatures, both environments in which supercapacitors could be used.
Fisher directs UCLA's Nanoscale Transport Research Group and is a member of the California NanoSystems Institute at UCLA. Lei Chen, a professor at Mississippi State, was the project's other principal investigator. The first authors are Guoping Xiong of the University of Nevada, Reno, and Pingge He of Central South University. The research was supported by the Air Force Office of Scientific Research.

UCLA Henry Samueli School of Engineering of Applied Science

Related Energy Storage Articles:

Breakthrough enables storage and release of mechanical waves without energy loss
A new discovery by researchers at the Advanced Science Research Center at The Graduate Center, CUNY could allow light and sound waves to be stored intact for an indefinite period of time and then direct it toward a desired location on demand.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy storage in the Midwest and beyond: A timely analysis
As the Federal Energy Regulatory Commission (FERC) released an update to last year's order on energy storage, MRS Energy & Sustainability today publishes a timely collection of papers that unpack the issue of energy storage in the Midwest and beyond.
Engineered bacteria could be missing link in energy storage
One of the big issues with sustainable energy systems is how to store electricity that's generated from wind, solar and waves.
Need more energy storage? Just hit 'print'
Drexel University researchers have developed a conductive ink made from a special type of material they discovered, called MXene, that was used by the Trinity College researchers to print components for electronic devices.
More Energy Storage News and Energy Storage Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...