Climate-friendly foam building insulation may do more harm than good

February 23, 2021

The use of the polymeric flame retardant PolyFR in "eco-friendly" foam plastic building insulation may be harmful to human health and the environment, according to a new commentary in Environmental Science & Technology. The authors' analysis identifies several points during the lifecycle of foam insulation that may expose workers, communities, and ecosystems to PolyFR and its potentially toxic breakdown products.

With the climate crisis fueling demand for energy-efficient insulation, the production of PolyFR is increasing rapidly. That's because this flame retardant is added to all foam plastic building insulation in North America to comply with flammability codes, replacing the flame retardant hexabromocyclododecane that has been globally phased out due to its toxicity and persistence. PolyFR is commonly assumed to be safe. However, the authors question that assumption.

The presumed safety of PolyFR hinges on the claim that as a large molecule called a polymer, it has few opportunities for release from foam insulation. But the authors' analysis shows that in fact, PolyFR in building insulation has significant opportunities for release into the environment during manufacturing, installation, and disposal of foam insulation. Once released, the PolyFR may break down into harmful chemicals that can end up in people and ecosystems.

"Since so much PolyFR is being used and so little is known about its release into the environment, we need to have realistic assessments of the potential for PolyFR across its life cycle to harm human and environmental health," said Miriam Diamond, Professor at University of Toronto and corresponding author of the study.

PolyFR is a polymer made from butadiene and styrene, which are both carcinogens. Bromine is added making it a brominated flame retardant--such flame retardants studied in the past were found to be toxic and many have been phased out of use.

A greater understanding of the potential for health harm associated with the increasing production of PolyFR, as well as its eventual breakdown and disposal, is needed to protect workers, fenceline communities near waste disposal sites, and others exposed throughout this flame retardant's lifecycle.

Importantly, alternative insulation materials already exist which do not require the use of potentially hazardous flame retardants. Inherently flame-resistant mineral fibers, such as glass wool or stone wool, can be used instead. Also, the fire safety benefit of adding flame retardants should be established before such chemicals are used.

"Making buildings more energy-efficient is a key part of tackling the climate crisis," said co-author Arlene Blum, Executive Director of the Green Science Policy Institute. "But we need to be careful not to create new health and environmental problems along the way. A 'green building' with potentially hazardous insulation isn't a green building at all."
-end-


Green Science Policy Institute

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.