Climate impacts drive east-west divide in forest seed production

February 23, 2021

DURHAM, N.C. -- Younger, smaller trees that comprise much of North America's eastern forests have increased their seed production under climate change, but older, larger trees that dominate forests in much of the West have been less responsive, a new Duke University-led study finds.

Declines in these trees' seed production, or fecundity, could limit western forests' ability to regenerate following the large-scale diebacks linked to rising temperatures and intensifying droughts that are now occurring in many states and provinces.

This continental divide, reported for the first time in the new study, "could dramatically alter the composition and structure of 21st century North American forests," said James S. Clark, Nicholas Distinguished Professor of Environmental Science at Duke, who led the research.

Knowing the contrasting responses occur -- and understanding why they happen -- will help scientists more accurately predict future changes to North American forests and develop conservation and management strategies to mitigate the changes, he said.

Researchers from 48 institutions collaborated with Clark on the peer-reviewed study, which appears Feb. 23 in Nature Communications.

Fecundity is a measure of trees' capacity to regenerate after diebacks and other large-scale disturbances by dispersing seeds to habitats where their odds of future survival are more favorable. It's an essential factor for determining future forest responses to climate change, but like many ecological processes it's noisy, highly variable and incredible hard to estimate.

Fecundity changes over time, based on changes in a tree's size, growth rate or access to light, water and other resources, and is driven by two indirect climate impacts -- the effects of growth that depend on climate, and the effects of climate that depend on tree size -- that currently aren't accounted for in the models used to predict future change.

"It was the only major demographic process driving forest response to climate change that we lacked field-based estimates on," Clark said.

To address this problem, he devised new statistical software that allowed him to synthesize decades of raw data on size, growth, canopy spread, and access to resources for nearly 100,000 individual trees at long-term research sites and experimental forests across North America. The unfiltered raw data revealed what previous meta-analyses based on averaged measurements had missed: At the continental scale, fecundity increases as a tree grows larger, up to a point. And then it begins to decline.

"This explains the East-West divide. Most trees in the East are young, growing fast and entering a size class where fecundity increases, so any indirect impact from climate that spurs their growth also increases their seed production," Clark said. "We see the opposite happening with the older, larger trees in the West. There are small and large trees in both regions, of course, but the regions differ enough in their size structure to respond in different ways.

"Now that we understand, in aggregate, how this all works, the next step is to apply it to individual species or stands and incorporate it into the models we use to predict future forest changes," he said.

The data used in the study came from trees in the Mast Inference and Prediction (MASTIF) monitoring network, which includes more than 500 long-term field research sites nationwide, including plots that are also part of the National Ecological Observation Network (NEON).
-end-
Other Duke authors on the study were Christopher L. Kilner, Jordan Luongo, Renata Poulton-Kamakura, Ethan Ready, Chantal D. Reid, C. Lane Scher, William H. Schlesinger, Shubhi Sharma, Samantha Sutton, Jennifer J. Swenson and Margaret Swift.

Funding came from the National Science Foundation, the Belmont Forum, NASA, and the Ministere de l'Enseignement Superieur de la Recherche et de l'Innovation "Make Our Planet Great Again" initiative.

In addition to Clark's primary faculty appointment at Duke's Nicholas School of the Environment, he holds a secondary appointment at the Université Grenoble Alpes' Institute National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement.

CITATION: "Continent-wide Tree Fecundity Driven by Indirect Climate Effects," J.S. Clark, R. Andrus, M. Aubry-Kientz, Y. Bergeron, M. Bogdziewicz, D.C. Bragg, D. Brockway, N.L. Cleavitt, S. Cohen, B. Courbaud, R. Daley, A.J. Das, M. Dietze, T.J. Fahey, I. Fer, J.F. Franklin, C.A. Gehring, G.S. Gilbert, C.H. Greenberg, Q. Guo, J. Hille Ris Lambers, I. Ibanez, J. Johnstone, C.L. Kilner, J. Knops, W.D. Koenig, G. Kunstler, J.M. LaMontagne, K.L. Legg, J. Luongo , J.A. Lutz, D. Macias, E.J.B. McIntire, Y. Messaoud, C.M. Moore, E. Moran, J.A. Myers, O.B. Myers, C. Nunez, R. Parmenter, S. Pearse, S. Pearson, R. Poulton-Kamakura, E. Ready, M.D. Redmond, C.D. Reid, K.C. Rodman, C.L. Scher, W.H. Schlesinger, A.M. Schwantes, E. Shanahan, S. Sharma, M. Steele, N.L. Stephenson, S. Sutton, J.J. Swenson, M. Swift, T.T. Veblen, A.V. Whipple, T.G. Whitham, A.P. Wion, K. Zhu, R. Zlotin; Feb. 23, 2021, Nature Communications. DOI: 10.1038/s41467-020-20836-3

Duke University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.