The unveiling of a novel mechanism of resistance to immunotherapy targeting HER2

February 23, 2021

Immunotherapy continues to show exciting promise in more effectively combating several tumor types. Many current strategies focus on ensuring the efficient delivery of active cytotoxic cells directly to tumors. It is thought that once the lymphocytes engage to cancer cells they will unfailingly destroy them, provided that inhibitory mechanisms are in check.

Results from a study published in Nature Communications*, now reveal how cancer cells escape death by lymphocytes through the disruption of interferon-gamma signaling. Co-first authored by Enrique J. Arenas and Alex Martínez-Sabadell, Post-doctoral Fellow and Graduate Student, respectively, of Joaquín Arribas' Growth Factors Group at VHIO, their findings show promise in potentiating future immune-based therapies against solid tumors.

Global research efforts centering on T cell-engaging therapies T-cell bispecific antibodies (TCBs) and chimeric antigen receptors (CARs), are heightening expectations for the more effective treatment of cancer.

"While these immune-based approaches have already been approved for the treatment of some hematologic malignancies, they fail to show efficacy in clinical studies with solid tumors. This failure has previously been associated with the incapacity of T-cells to successfully target cancer cells directly. Up until now, little has been reported on the mechanisms adopted by tumors which enable them to resist T-cell attack. This has been the focus of our present research," said Joaquín Arribas, co-Program Director of Preclinical and Translational Research at VHIO, ICREA Professor, CIBERONC Investigator, Director of the Hospital del Mar Medical Research Institute (IMIM), and Corresponding Author of this study.

He continued, "Several different strategies are now being implemented by the cancer research community to overcome these mechanisms of resistance. We aimed to go one step further by establishing whether more mechanisms exist that enable cancer cells to overcome the onslaught of targeted lymphocytes."

Using HER2-driven cell lines and PDXs, and a TCB and CAR targeting HER2, the investigators have now unmasked a novel mechanism of resistance to redirected T-cells. Specifically, they have discovered that even when active cytotoxic cells are successfully delivered to tumor cells, the latter adopt a strategy to avoid their elimination by lymphocytes. Findings suggest that the disruption of interferon-gamma signaling confers resistance and therefore promotes disease progression.

Interferon?gamma (IFN?γ) is a cytokine that assumes an important role in inducing and modulating an array of immune responses. "It acts as an interrupter that controls cell death. Certain cancer cells learn to switch off this pathway and thus survive the attack of lymphocytes. At present, there is no easy way of applying this discovery in clinical practice. Namely, to effectively identify those patients who have this pathway turned off. This represents a next step in our research; to develop a simple method to be able to do so," noted co-First Author, Enrique J. Arenas.

Previous research led by Joaquín Arribas published in Science Translational Medicine (2018) **, showed that the p95HER2-T-cell bispecific antibody can successfully guide lymphocytes directly to cancer cells for their targeted killing. This direct delivery was achieved thanks to the p95HER2 protein, which is only located in tumor cells. Representing a new therapeutic avenue and fresh hope for patients who have ceased to respond to current therapies, this novel immune-based approach can be used to tackle certain HER2+ breast cancers through its exclusive targeting of cancerous cells.

Building on these findings, the investigators hope to launch a new clinical trial in 2024-25 to further advance CAR-T targeting in breast cancer. "Driven by our discoveries, we aim to more precisely screen patients for enrollment in this clinical study, better predict when resistance will occur, and develop strategies to overcome the mechanisms that govern this resistance," concluded Joaquín Arribas.

This present research published today in Nature Communications also counted on the expertise and collaboration of investigators belonging to the VHIO-BBVA Foundation's Comprehensive Program of Cancer Immunotherapy & Immunology (CAIMI), and was supported through funding received from the Spanish Association against Cancer (Asociación Española contra el Cáncer - AECC), Breast Cancer Research Foundation (BCRF), and the Carlos III Health Institute (Instituto de Salud Carlos III - ISCIII).
-end-
References:

*Arenas EJ, Martínez-Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, Fajardo CA, Gros A, Klein C and Arribas J. Acquired cancer cell resistance to T-cell bispecific antibodies and CAR- T targeting HER2 through JAK2 down-modulation. Nat. Commun. (2021). DOI: 10.1038/s41467-021-21445-4.

**Rius Ruiz I, Vicario R, Morancho B, Morales CB, Arenas EJ, Herter S, Freimoser-Grundschober A, Somandin J, Sam J, Ast O, Barriocanal ÁM, Luque A, Escorihuela M, Varela I, Cuartas I, Nuciforo P, Fasani R, Peg V, Rubio I, Cortés J, Serra V, Escriva-de-Romani S, Sperinde J, Chenna A, Huang W, Winslow J, Albanell J, Seoane J, Scaltriti M, Baselga J, Tabernero J, Umana P, Bacac M, Saura C, Klein C, Arribas J. p95HER2-T cell bispecific antibody for breast cancer treatment. Sci Transl Med. 2018 Oct 3;10(461):eaat1445.

About the Vall d'Hebron Institute of Oncology (VHIO):

Established in 2006, the Vall d'Hebron Institute of Oncology (VHIO) is a leading comprehensive cancer center of excellence where its scientists and research physicians adopt a purely translational research model, working together as multidisciplinary teams to both accelerate and advance personalized and targeted therapies against cancer.

Undertaking one of Spain's most dynamic cancer research programs, VHIO is dedicated to delivering on the promise of precision medicine in oncology - turning cancer discovery into more effective treatments and better practice for the care of our patients.

http://www.vhio.net

Vall d'Hebron Institute of Oncology

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.