Scientists propose a new heavy particle similar to the Higgs boson

February 23, 2021

Unlike the Higgs boson, discovered at CERN's Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this collider

The University of Granada is among the participants in this major scientific advancement in Theoretical Physics, which could help unravel the mysteries of dark matter

Scientists from the University of Granada (UGR) and the Johannes Gutenberg University Mainz (Germany) have recently published a study in which they endeavour to extend the Standard Model of particle physics (the equivalent of 'the periodic table' for particle physics) and answer some of the questions that this model is unable to answer. Such puzzles include: What is dark matter made of? Why do the various constituents of fermionic dark matter have such different masses? Or, why is the force of gravity much weaker than electromagnetic interaction?

This work, published in the European Physical Journal C, is based on the existence of a dimension in spacetime that is "so small that we can only detect evidence of it through its indirect effects," explains one of the authors of the article, Adrián Carmona, Athenea3i Fellow at the UGR and a member of the Department of Theoretical Physics and the Cosmos.

As early as the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated on the existence of an extra dimension beyond the familiar three space dimensions and time (which, in physics, are combined into a 4-dimensional spacetime).

Such models became popular in the 1990s, when theoretical physicists realized that theories with curved extra dimensions could explain some of the major mysteries in this field. However, despite their many strengths, such models generally lacked a viable dark-matter candidate.

Now, more than 20 years later, Adrián Carmona and collaborators from the University of Mainz, Professor Matthias Neubert and doctoral student Javier Castellano, have predicted the existence of a new heavy particle in these models with properties similar to those of the famous Higgs boson.

A new dimension

"This particle could play a fundamental role in the generation of masses of all the particles sensitive to this extra dimension, and at the same time be the only relevant window to a possible dark sector responsible for the existence of dark matter, which would simultaneously solve two of the biggest problems of these theories that, a priori, appear disconnected," explains the UGR researcher.

However, unlike the Higgs boson, which was discovered at CERN's Large Hadron Collider in 2012 after a 40-year quest, the new particle proposed by these researchers is so heavy that it could not be produced directly even in this, the highest-energy particle collider in the world.

In the article, the researchers explore other possible ways of discovering this particle by looking for clues about the physics surrounding a very early stage in the history of our universe, when dark matter was produced.

Carmona, A., Castellano Ruiz, J. & Neubert, M. (2021) 'A warped scalar portal to fermionic dark matter', Eur. Phys. J. C 81, 58.

University of Granada

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to