Dysentery uses 'sword and shield' to cause infection

February 24, 2005

Scientists have found that the bacterium that causes dysentery uses a 'sword and shield' approach to cause infection.

According to research published today in Science, the team from Imperial College London and Institut Pasteur, Paris, found that shigella, the bacteria which causes dysentery, is able to invade cells, while stopping any response from the immune system.

They found that shigella was able to infect cells by using a secretion system to inject proteins into human cells, (the sword), while lipopolysaccharide (LPS) on the surface of the bacteria acts as a shield to protect the dysentery bacterium from being destroyed by the body's immune system.

Dr Christoph Tang, from Imperial College London, and one of the researchers, comments: "This is the first description of bacteria able to use this 'sword and shield' approach, showing how dysentery is able to infect the body so effectively. We have shown why the bacteria can avoid being destroyed by the body's immune responses through the expression of a molecule that acts as a shield on its surface."

The researchers found that shigella, the bacteria causing dysentery uses a Type III secretion system to inject proteins into human cells. This causes the cells to become inflamed, resulting in symptoms of dysentery, such as bloody diarrhoea. At the same time, the LPS chains on the surface of the bacteria are shortened. This allows the needles to inject proteins, while protecting the bacteria from being destroyed by the immune system.

Dr Tang adds: "This discovery greatly expands our understanding of how bacteria are sometimes able to evolve although it is unlikely to result in new treatments or vaccines for dysentery. In this case, the dysentery bacteria has evolved into a highly effective and dangerous infection."
-end-


Imperial College London

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.