An electrifying discovery: New material to harvest electricity from body movements

February 24, 2010

Scientists are reporting an advance toward scavenging energy from walking, breathing, and other natural body movements to power electronic devices like cell phones and heart pacemakers. In a study in ACS' monthly journal, Nano Letters, they describe development of flexible, biocompatible rubber films for use in implantable or wearable energy harvesting systems. The material could be used, for instance, to harvest energy from the motion of the lungs during breathing and use it to run pacemakers without the need for batteries that must be surgically replaced every few years.

Michael McAlpine and colleagues point out that popular hand-held consumer electronic devices are using smaller and smaller amounts of electricity. That opens the possibility of supplementing battery power with electricity harvested from body movements. So-called "piezoelectric" materials are the obvious candidates, since they generate electricity when flexed or subjected to pressure. However, manufacturing piezoelectric materials requires temperatures of more than 1,000 degrees F., making it difficult to combine them with rubber.

The scientists describe a new manufacturing method that solves this problem. It enabled them to apply nano-sized ribbons of lead zirconate titanate (PZT) -- each strand about 1/50,000th the width of a human hair -- to ribbons of flexible silicone rubber. PZT is one of the most efficient piezoelectric materials developed to date and can convert 80 percent of mechanical energy into electricity. The combination resulted in a super-thin film they call 'piezo-rubber' that seems to be an excellent candidate for scavenging energy from body movements.
-end-
ARTICLE FOR IMMEDIATE RELEASE "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nl903377u

CONTACT:
Michael McAlpine, Ph.D.
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, N.J. 08544
Phone: 609-542-0275
Fax: 609-258-1918
Email: mcm@princeton.edu

American Chemical Society

Related Electricity Articles from Brightsurf:

Mirror-like photovoltaics get more electricity out of heat
New heat-harnessing 'solar' cells that reflect 99% of the energy they can't convert to electricity could help bring down the price of storing renewable energy as heat, as well as harvesting waste heat from exhaust pipes and chimneys.

Engineers use electricity to clean up toxic water
Powerful electrochemical process destroys water contaminants, such as pesticides. Wastewater is a significant environment issue.

Considering health when switching to cleaner electricity
Power plants that burn coal and other fossil fuels emit not only planet-warming carbon dioxide, but also pollutants linked to breathing problems and premature death.

Windows will soon generate electricity, following solar cell breakthrough
Semi-transparent solar cells that can be incorporated into window glass are a 'game-changer' that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.

Static electricity as strong as lightening can be saved in a battery
Prof. Dong Sung Kim and his joint research team presented a new technology that can increase the amount of power generated by a triboelectric nanogenerator.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.

Water + air + electricity = hydrogen peroxide
A reactor developed by Rice University engineers produces pure hydrogen peroxide solutions from water, air and energy.

Producing electricity at estuaries using light and osmosis
Researchers at EPFL are working on a technology to exploit osmotic energy -- a source of power that's naturally available at estuaries, where fresh water comes into contact with seawater.

Experimental device generates electricity from the coldness of the universe
A drawback of solar panels is that they require sunlight to generate electricity.

Read More: Electricity News and Electricity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.