Bone marrow cell transplants to benefit those with heart disease

February 24, 2010

Tampa, Fla. (February 24, 2010) - Two studies published in the latest issue of Cell Transplantation (18:12) may lead to new treatments for the treatment of heart diseases. The first study, carried out by a team of Brazilian researchers, found that cell transplantation of bone marrow mononuclear cells (BMMCs) directly into the heart benefited patients suffering from refractory angina. A separate study carried out by researchers in the Peoples' Republic of China found that apelin, a newly described inotropic peptide, improves heart function following transplantation of BMMCs.

The results of these studies and others are available on-line free of charge at http://www.ingentaconnect.com/content/cog/ct/ .

ReACT bone marrow cell transplants help refractory angina

A team of Brazilian researchers has evaluated the safety and efficacy of a surgical procedure involving multiple injections into the heart (intramyocardial) of a bone marrow mononuclear cells (BMMCs) formulation derived from the patient (autologous) called "Refractory Angina Cell Therapy (ReACT)". The researchers found that the procedure benefitted all eight of the refractory angina patients in the study, all of whom had previously received surgical revascularization.

"The large fraction of monocytes in the ReACT formula appears to be related to the new blood vessel growth, or angiogenesis, that restores perfusion on the myocardial ischemic areas after the cell transplantation," said corresponding author Dr. Nelson Americo Hossne, Jr. of the Paulista School of Medicine, Federal University of Sao Paulo. "For our patients, angina symptom relief began as early as three months post-procedure with continuing improvement through the twelfth month and sustained improvement past 18 months. Symptom relief improved in all patients, suggesting that the effect is sustained, not transitory."

According to Prof. Enio Buffolo, co-author from the same institution, up to 15 percent of patients with coronary artery disease present severe, disabling angina pectoris that cannot be controlled by combinations of current therapies, including drug therapy, coronary angioplasty, or coronary by-pass surgery.

"This results in a substantial decrease in the quality of life for the refractory angina patient," added Prof. Enio Buffolo.

Bone marrow is a natural source of a broad spectrum of cytokines involved in controlling angiogenic and inflammatory processes. Bone marrow white blood cells therefore play an important role in the angiogenic mechanism, contributing to the revascularization of the heart.

The researchers selected the intramyocardial route for injection based on prior experimental data showing higher myocardial stem cell uptake. Endpoints for patient improvement were based on the Canadian Cardiovascular Society Angina Classification (CCSAC) system. According to Dr. Hossne, the ReACT formulation, designed in compliance with Good Manufacturing Practices (GMP) standards criteria, was found to be safe and effective, supporting further study with a larger number of patients.

"Patient improvement by the subjective CCSAC measures was followed by a correlated reduction in the myocardium ischemic area," concluded Dr. Hossne. "This strongly suggests neoangiogenesis as the main mechanism of action for these cells."

Contact: Dr. Nelson Americo Hossne, Jr., Cardiovascular Surgery Division, Surgery Department, Paulista School of Medicine, Federal University of Sao Paulo, Botucato St.
740 Sao Paulo, Brazil ZIP 04023-900.
Tel: +55-11-8166-5050; fax: +55-11-5052-0386,
Email: nelson.hossne@gmail.com




Apelin helps heart function after bone marrow transplant

Apelin, a newly described inotropic peptide (related to the force of heart muscle contraction) with important cardiovascular regulatory properties, contributes to functional improvement in patients with severe heart failure after they have undergone implantation with bone marrow mononuclear cells (BMMC). The study, carried out at the Navy General Hospital in Beijing, evaluated 40 patients with severe heart failure following myocardial infarction. Twenty patients were assigned to receive BMMC transplants and 20 received standard medication. Another 20 healthy patients were assigned as controls.

"Baseline levels of plasma apelin were significantly lower in all heart failure patients as compared to normal, healthy subjects," said corresponding author Dr. Lian Ru Gao. "However, in patients who underwent cell transplantation, apelin increased significantly from three to 21 days post-transplantation. This increase in apelin was also followed by significant improvement in cardiac function."

In patients who received standard treatment, there was no increase in apelin.

According to the researchers, apelin, known to be a potent inotropic agent, was recently recognized as an important regulator of myocardial cell specification and heart development. In addition, reports that apelin concentration decreased with heart function impairment led the researchers to hypothesize that bone marrow transplantation might play a role in improving heart function by releasing apelin.

"Our objective was to assess how apelin plasma levels changed post-transplantation as well as to determine the relationship between increased apelin levels and heart function," added Dr. Gao.

Apelin levels increased in all patients who received BMMCs, and cardiac function improved as reflected by the relief of dyspnea and other measures, and so the researchers concluded that apelin signaling may play an important role in the heart function improvement observed after BMMC transplantation.

"Increased apelin levels may act as a paracrine mediator produced from BMMCs and may play an important role in the treatment of heart failure through autocrine and paracrine mechanisms," Dr. Gao concluded.

"Both studies demonstrate a possible mechanistic approach in a clinical trial either via the role of monocytes or Apelin to improve cardiac function" said Dr. Amit Patel associate professor of surgery at the University of Utah School of Medicine and the cardiovascular, skin, other tissue section editor of Cell Transplantation ."These important findings further enhance the understanding of the use of bone marrow derived cell therapy for the treatment of cardiovascular disease.".

Contact: Dr. Lian Ru Gao, Department of Cardiology, Navy General Hospital, 6 Fucheng Road, Beijing 100037, China.
Tel: 011-86-10-88180197; fax: 011-86-10-68780127043,
Email: lianru@yahoo.com.cn
-end-
The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Cell Transplantation Center of Excellence for Aging and Brain Repair

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.