OSA, APS highlight history and future of laser technology at 2010 AAAS Annual Meeting

February 24, 2010

WASHINGTON, Feb. 24--As part of LaserFest, the year-long celebration of the 50th anniversary of the first working laser, the Optical Society (OSA) and the American Physical Society (APS) sponsored a special day-long seminar on the birth, growth and future developments in laser science and technology at the 2010 American Association for the Advancement of Science (AAAS) annual meeting. The seminar, titled "The History and Future of Laser Technology," took place Sunday, Feb. 21 in San Diego at the meeting, considered the world's largest interdisciplinary science forum.

Presenters at the first symposium, titled "Celebrating the Birth of the Laser: a Look Back After 50 Years," discussed the story of how the laser came to be and recounted the early growth of this ubiquitous device. Once an embryonic research tool with no clear applications beyond the lab, speakers noted that the laser is now recognized as a transformative technology of the 20th century with immense scientific, commercial, industrial, and societal importance. Further, its impact on how we live, from healthcare and communications to national security and entertainment continues to accelerate. Presenters included Anthony Siegman of Stanford University discussing "How the Laser Came To Be;" William B. Bridges of the California Institute of Technology, speaking on "Gas Lasers: The Early Years;" and Jeff Hecht of Laser Focus World magazine, who presented "Looking Back at How the Laser Evolved."

"There can be no better example of the impact that pure scientific research can have on society than the history of the laser," said Anthony J. Campillo, senior director of science policy at OSA and co-organizer of the first symposium. "Rivaled only by the transistor, it is a renowned illustration of how laboratory science leads to untold applications and benefits to society."

Addressing "Lasers at the Extreme," symposium organizer Thomas M. Baer, executive director of the Stanford Photonics Research Center, moderated a discussion of the newest uses of lasers involving: Presenters on these topics included David N. Payne of the University of Southampton; and Edward Moses of the National Ignition Facility at Lawrence Livermore National Laboratory (LLNL).

"This extraordinary light source enables us to probe states of matter in unique ways and study the fundamental properties of our universe," said Baer. "We can now make the coldest and hottest 'stuff' on Earth right on a table top in an optics laboratory, allowing us to extend the utility of the photon and advance our understanding of nature's fundamental building blocks."

In the symposium titled "The Next Generation of Extreme Optical Tools and Applications," scientists discussed how the newest laser-based tools and techniques expand the laser's promise for both scientific research and practical, everyday applications, for example, to: Presenters at this symposium included Robert L. Byer of Stanford University; Margaret Murnane of the University of Colorado, Boulder; Christopher Barty of LLNL; Keith Hodgson of SLAC National Accelerator Laboratory; Toshiki Tajima of the Max Planck Institute for Quantum Optics; and Wim Leemans of Lawrence Berkeley National Laboratory.

"From gamma rays to megawatts to attoseconds, developments in optical techniques at the extremes of laser light offer the potential basis for the next generation of accelerators, attosecond timescale free-frame photographs of electron motion, light intense enough to allow vacuum nonlinearity to be observed, and the direct examination of gravity waves," said Moderator Christopher Ebbers, staff physicist at LLNL. "Previous and current laser research has not only advanced the frontiers of fundamental science, it has yielded a multitude of potential practical solutions in fields as diverse as machining, energy production, and national defense. We expect that trend to continue."
-end-
More information on the AAAS Annual Meeting is available at http://www.aaas.org/meetings/2010.

About LaserFest

LaserFest, a celebration of the 50th anniversary of the laser, emphasizes the laser's impact throughout history and highlights its potential for the future. Through a series of events and programs, LaserFest showcases the prominence of the laser in today's world. For more information, visit www.LaserFest.org.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

About APS

The American Physical Society is the leading professional organization of physicists, representing over 48,000 physicists in academia and industry in the United States and internationally. APS has offices in College Park, MD (Headquarters), Ridge, NY, and Washington, DC.

The Optical Society

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.