More tropical cyclones in past could play role in warmer future

February 24, 2010

New Haven, Conn. -- More frequent tropical cyclones in Earth's ancient past contributed to persistent El Niño-like conditions, according to a team of climate scientists led by Yale University. Their findings, which appear in the Feb. 25 issue of the journal Nature, could have implications for the planet's future as global temperatures continue to rise due to climate change.

The team used both cyclone and climate models to study the frequency and distribution of tropical cyclones (also known as hurricanes or typhoons) during the Pliocene epoch, a period three to five million years ago when temperatures were up to four degrees Celsius warmer than today.

The team found that there were twice as many tropical cyclones during this period, that they lasted two to three days longer on average than they do now, and that, unlike today, they occurred across the entire tropical Pacific Ocean.

"The Pliocene is the best analog we have in the past for what could happen in our future," said Christopher Brierley, a Yale postdoctoral associate and an author of the study. "We wondered whether all these storms could have contributed to the warmer climate."

In fact, the team discovered a positive feedback cycle between tropical cyclones and upper-ocean circulation in the Pacific that explains the increase in storms and appears to have led to permanent El Niño-like conditions.

Today, cold water originating off the coasts of California and Chile skirts around the region of tropical cyclone activity on its way to the Equator, where it results in a "cold tongue" that stretches west off the coast of South America. During the Pliocene, however, the team found that this cold water could not avoid being hit by one of the many tropical cyclones, which would churn up and mix warmer water into it. This warming at the Equator led to changes in the atmosphere that in turn created more tropical storms--and the cycle would repeat.

The team hopes to study how much mixing could result from tropical cyclones in today's ocean waters--something that is hard to incorporate in global climate models, said Alexey Fedorov, an associate professor at Yale and lead author of the paper.

Fedorov cautioned that there is not necessarily a direct link between what happened during the Pliocene and what might happen in the future, as the team's results for this epoch differed in many respects from current projections for future global warming. For example, the existing consensus is that, while the number of intense hurricanes will increase, the overall number will actually decrease.

"However, unless we understand the causes of these differences, we will not be sure whether our projections are correct," Fedorov said. "Changes in the frequency and distribution of these storms could be a significant component of future climate conditions."
-end-
Other authors of this paper include Kerry Emanuel of the Massachusetts Institute of Technology.

Funding for this study was provided by the National Science Foundation, the Department of Energy Office of Science, and the David and Lucile Packard Foundation.

DOI: nature08831.3d

Yale University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.