Missing sugar molecule raises diabetes risk in humans

February 24, 2011

Researchers at the University of California, San Diego School of Medicine and Rady Children's Hospital-San Diego say an evolutionary gene mutation that occurred in humans millions of years ago and our subsequent inability to produce a specific kind of sialic acid molecule appears to make people more vulnerable to developing type 2 diabetes, especially if they're overweight.

The findings are published in the Feb. 24 online edition of The FASEB Journal, a publication of the Federation of American Societies of Experimental Biology.

Corresponding study author, Jane J. Kim, an assistant professor in the UCSD Department of Pediatrics, a member of the Pediatric Diabetes Research Center and Rady Children's Hospital-San Diego, said the findings represent the first documented evidence linking the non-human sialic acid production to insulin and glucose metabolism problems associated with diabetes.

"It opens up a new perspective in understanding the causes of diabetes," said Kim. "Given the global epidemic of obesity and diabetes, we think that these findings suggest that evolutionary changes may have influenced our metabolism and perhaps increased our risk of the disease."

Type 2 diabetes is caused by both genetic and environmental factors, such as a fatty diet and lack of exercise, that result in progressively dysfunctional pancreatic beta cells, elevated blood sugar levels due to insulin resistance and eventual health complications, sometimes fatally so. Diabetes is an expanding problem, nationally and globally. In the United States, more than 25 million adults and children - almost nine percent of the population - have diabetes, according to the American Diabetes Association. Another 79 million Americans are estimated to be prediabetic. Worldwide, roughly 285 million people are believed to have the disease.

Sialic acids are molecules found on the surfaces of all animal cells, where they act as vital contact points for interaction with other cells and with their surrounding environment. All mammals studied to date produce two types: N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc).

Humans are an exception. For reasons lost in the mists of evolution, a mutation in a gene called CMAH occurred about 2 to 3 million years ago, inactivating an enzyme in humans that catalyzes production of Neu5Gc by adding a single oxygen atom to Neu5Ac. This discovery was made earlier by UCSD scientists, led by Ajit Varki, MD, professor of medicine and cellular and molecular medicine at UC San Diego School of Medicine. They then developed a mouse model with a human-like defect in the CMAH gene.

Kim's group compared mice with a functional CMAH gene to mice with a human-like mutation in CMAH. Both groups of mice were fed a high-fat diet. Mice in both groups became obese and developed insulin resistance. However, only mice with the CMAH gene mutation experienced pancreatic beta cell failure. Pancreatic beta cells normally make and release insulin, a hormone that controls blood sugar levels.

Kim said the findings help refine understanding of why obese humans appear to be particularly vulnerable to type 2 diabetes, and also suggest that current animal models used to study diabetes may not accurately mirror the human condition. In clinical terms, she said further research to determine how sialic acid composition affects pancreatic beta cell function may reveal new strategies to preserve the cells, improve insulin production and prevent diabetes.

"It's exciting to see the real-life significance of our discovery of the human CMAH mutation, said Varki, who is also co-director of the Glycobiology Research and Training Center and the Center for Academic Research and Training in Anthropogeny, both at UC San Diego. "This shows yet again that research in fundamental processes of biology and evolution can yield unexpected dividends for understanding human disease."
-end-
Co-authors of the study are Sarah Kavaler and Alice Jih, UCSD Department of Pediatrics and Rady Children's Hospital-San Diego; Hidetaka Morinaga and WuQuiang Fan, UCSD Department of Medicine; Maria Hedlund, UCSD departments of Medicine and Cellular and Molecular Medicine and UCSD Glycobiology Research and Training Center.

Funding support was provided by the National Institutes of Health and the UCSD/UCLA Diabetes and Endocrine Research Center.

University of California - San Diego

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.