Drier conditions projected to accelerate dust storms in the southwest

February 24, 2011

MOAB, Utah -- Drier conditions projected to result from climate change in the Southwest will likely reduce perennial vegetation cover and result in increased dust storm activity in the future, according to a new study by scientists with the U.S. Geological Survey and the University of California, Los Angeles.

The research team examined climate, vegetation and soil measurements collected over a 20-year period in Arches and Canyonlands National Parks in southeastern Utah. Long-term data indicated that perennial vegetation in grasslands and some shrublands declined with temperature increases. The study then used these soil and vegetation measurements in a model to project future wind erosion.

The findings strongly suggest that sustained drought conditions across the Southwest will accelerate loss of grasses and some shrubs and increase the likelihood of dust production on disturbed soil surfaces in the future. However, the community of cyanobacteria, mosses and lichens that hold the soil together in many semiarid and arid environments--biological soil crusts--prevented wind erosion from occurring at most sites despite reductions in perennial vegetation.

"Accelerated rates of dust emission from wind erosion have large implications for natural systems and human well-being, so developing a better understanding of how climate change may affect wind erosion in arid landscapes is an important and emerging area of research," said Seth Munson, a USGS ecologist and the study's lead author.

Dust carried by the wind has received recent attention because of its far-reaching effects, including the loss of nutrients and water-holding capacity from source landscapes, declines in agricultural productivity and health and safety concerns. Dust is also a contributing factor in speeding up the melting of snow, which affects the timing and magnitude of runoff into streams and rivers.
-end-
Peak wind speeds in the Southwest during the study period generated high rates of sediment transport. Dust storms have been detected by USGS field instrumentation (http://gec.cr.usgs.gov/info/sw/clim-met) and satellite images (http://sgst.wr.usgs.gov/dust_monitoring/dust-events).

Results of the study, Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau, appear in this week's edition of Proceedings of the National Academy of Sciences. To view the article, visit http://www.pnas.org/content/early/2011/02/16/1014947108.abstract. The research team included Seth Munson and Jayne Belnap, U.S. Geological Survey, Moab, Utah, and Gregory S. Okin, Department of Geography, University of California, Los Angeles.

US Geological Survey

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.