Enzyme cocktail could eliminate a step in biofuel process

February 24, 2011

Conversion of biomass to fuel requires several steps: chemical pretreatment to break up the biomass - often dilute (sulfuric) acid, detoxification to remove the toxic chemicals required in pretreatment, and microbial fermentation to convert the soluble sugars to fuels. Virginia Tech researchers have discovered an enzyme mixture that works in the presence of the toxic infused liquid biomass (hydrolysate), meaning that the detoxification step is unnecessary, reducing the cost of producing biofuels as well as increasing biofuel yields by avoiding the production of by-products and synthesis of cell mass.

An article on the research -previously planned for the Feb. 25 print issue of the journal Chemistry & Biology - is now scheduled for publication on March 25, according to the journal, however it is no longer embargoed until publication.

"Enzymes self-assemble a cell-free synthetic pathway; that is, we can put the desired biological reactions to work without the other complex interactions that take place within a cell," said Y.H. Percival Zhang, associate professor of biological systems engineering at Virginia Tech.

"In microbial fermentations, glucose serves as both a growth substrate and a source of energy for generating a reduced power -- NADPH. In fact, only a small fraction of glucose is allocated to NADPH generation," he says. "The cell-free synthetic pathway process increases efficiency and reaction rate."

"By using an enzyme cocktail consisting of 12 purified enzymes and coenzymes, this work has also demonstrated that the enzyme cocktail systems can work in the presence of microorganism-toxic compounds from dilute-acid pretreated biomass, suggesting that enzyme systems do not require high-purity substrates for biotransformation," said Zhang. "In other words, after pretreatment, we can do bioconversion directly, followed by chemical catalysis," he said.

The article, "Biohydrogenation from Biomass Sugar Mediated by in vitro Synthetic Enzymatic Pathways," was written by Yiran Wang, research scientist in biological systems engineering at Virginia Tech; Weidong Huang, visiting scholar from the University of Science and Technology of China; Noppadon Sathitsuksanoh and Zhiguang Zhu; biological systems engineering Ph.D. students at Virginia Tech; and Zhang.

A previously published article by Huang and Zhang compared the production of four biofuels - ethanol, butanol, fatty acide ethyl ester, and hydrogen, and report that hydrogen production through the synthetic pathway process is the most efficient for biofuels production. "Also, this analysis suggested that it was nearly economically impossible to produce advanced biofuels through aerobic fermentation as compared to anaerobic fermentations and enzyme cocktails," said Zhang.
-end-
The article, "Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation," appears in the advanced online Dec. 16, 2010 edition of the journal Energy & Environmental Science (http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C0EE00069H).

Learn more about Dr. Zhang's work at: http://www.sugarcar.com

Virginia Tech

Related Biofuels Articles from Brightsurf:

Making biofuels cheaper by putting plants to work
One strategy to make biofuels more competitive is to make plants do some of the work themselves.

How to make it easier to turn plant waste into biofuels
Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels.

Barriers and opportunities in renewable biofuels production
Researchers at Chalmers University of Technology, Sweden, have identified two main challenges for renewable biofuel production from cheap sources.

How biofuels from plant fibers could combat global warming
A study from Colorado State University finds new promise for biofuels produced from switchgrass, a non-edible native grass that grows in many parts of North America.

Calculating the CO2 emissions of biofuels is not enough
A new EU regulation aims to shrink the environmental footprint of biofuels starting in 2021.

Algae cultivation technique could advance biofuels
Washington State University researchers have developed a way to grow algae more efficiently -- in days instead of weeks -- and make the algae more viable for several industries, including biofuels.

Cutting the cost of ethanol, other biofuels and gasoline
Biofuels like the ethanol in US gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.

Cellulosic biofuels can benefit the environment if managed correctly
Could cellulosic biofuels -- or liquid energy derived from grasses and wood -- become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs?

Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.

WSU study finds people willing to pay more for new biofuels
When it comes to second generation biofuels, Washington State University research shows that consumers are willing to pay a premium of approximately 11 percent over conventional fuel.

Read More: Biofuels News and Biofuels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.