Preventing chronic pain with stress management

February 24, 2013

For chronic pain sufferers, such as people who develop back pain after a car accident, avoiding the harmful effects of stress may be key to managing their condition. This is particularly important for people with a smaller-than-average hippocampus, as these individuals seem to be particularly vulnerable to stress. These are the findings of a study by Dr. Pierre Rainville, PhD in Neuropsychology, Researcher at the Research Centre of the Institut universitaire de gériatrie de Montréal (IUGM) and Professor in the Faculty of Dentistry at Université de Montréal, along with Étienne Vachon-Presseau, a PhD student in Neuropsychology. The study appeared in Brain, a journal published by Oxford University Press.

"Cortisol, a hormone produced by the adrenal glands, is sometimes called the 'stress hormone' as it is activated in reaction to stress. Our study shows that a small hippocampal volume is associated with higher cortisol levels, which lead to increased vulnerability to pain and could increase the risk of developing pain chronicity," explained Étienne Vachon-Presseau.

As Dr. Pierre Rainville described, "Our research sheds more light on the neurobiological mechanisms of this important relationship between stress and pain. Whether the result of an accident, illness or surgery, pain is often associated with high levels of stress Our findings are useful in that they open up avenues for people who suffer from pain to find treatments that may decrease its impact and perhaps even prevent chronicity. To complement their medical treatment, pain sufferers can also work on their stress management and fear of pain by getting help from a psychologist and trying relaxation or meditation techniques."

Research summary

This study included 16 patients with chronic back pain and a control group of 18 healthy subjects. The goal was to analyze the relationships between four factors: 1) cortisol levels, which were determined with saliva samples; 2) the assessment of clinical pain reported by patients prior to their brain scan (self-perception of pain); 3) hippocampal volumes measured with anatomical magnetic resonance imaging (MRI); and 4) brain activations assessed with functional MRI (fMRI) following thermal pain stimulations. The results showed that patients with chronic pain generally have higher cortisol levels than healthy individuals.

Data analysis revealed that patients with a smaller hippocampus have higher cortisol levels and stronger responses to acute pain in a brain region involved in anticipatory anxiety in relation to pain. The response of the brain to the painful procedure during the scan partly reflected the intensity of the patient's current clinical pain condition. These findings support the chronic pain vulnerability model in which people with a smaller hippocampus develop a stronger stress response, which in turn increases their pain and perhaps their risk of suffering from chronic pain. This study also supports stress management interventions as a treatment option for chronic pain sufferers.
-end-
About the lead authors

Dr. Pierre Rainville, PhD in Neuropsychology, Researcher at the Research Centre of the IUGM
Director of the Laboratory of the Neuropsychophysiology of Pain
Full Professor, Department of Stomatology, Faculty of Dentistry, Université de Montréal
Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal

Étienne Vachon-Presseau, PhD student in Neuropsychology, Department of Psychology, Université de Montréal

Reference

Étienne Vachon-Presseau, Mathieu Roy, Marc-Olivier Martel, Etienne Caron, Marie-France Marin, Jeni Chen, Geneviève Albouy, Isabelle Plante, Michael J. Sullivan, Sonia J. Lupien et Pierre Rainville. "The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans", February 18, 2013.

University of Montreal

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.