NIST microanalysis technique makes the most of small nanoparticle samples

February 24, 2014

Researchers from the National Institute of Standards and Technology (NIST) and the Food and Drug Administration (FDA) have demonstrated that they can make sensitive chemical analyses of minute samples of nanoparticles by, essentially, roasting them on top of a quartz crystal. The NIST-developed technique, "microscale thermogravimetric analysis," holds promise for studying nanomaterials in biology and the environment, where sample sizes often are quite small and larger-scale analysis won't work.*

Chemical analysis of nanoparticles is a challenging task, and not just because they're small. They're also complicated. They can become coated with other materials in their environment, and the question becomes, what materials? Or they might have been engineered with a coating, perhaps to provide anchor points for drug molecules, and then the question can be, how complete is the coating? In nanoelectronics, the question may be, how pure is the sample and just what are the impurities?

Researchers have an alphabetic array of tools for this, including scanning, transmission or atomic force microscopy (SEM/TEM/AFM); dynamic light scattering (DLS); nuclear magnetic resonance (NMR); and sundry spectrometry techniques, but they all have a variety of limitations, including complex sample preparation or the difficulty of analyzing enough particles to get a statistically significant result.

On the other hand, one technique, thermogravimetric analysis (TGA) is quite straight-forward. The sample is heated and monitored for changes in mass as the temperature increases. Sudden changes in mass correlate with the energies needed to decompose, oxidize, dehydrate or otherwise chemically change components in the sample. If you have some idea of what you start with, TGA can tell you much more, but it requires pretty substantial sample sizes.

NIST's technique is essentially the same except that a small piezoelectric quartz crystal is substituted for the mass scale. A tiny amount of a nanomaterial sample deposited on the crystal dampens the crystal's resonant frequency, and as the sample grows lighter, the frequency shifts. NIST researchers originally applied it to measure the purity of carbon nanotube samples.**

In this latest paper, the research team tested the utility of microTGA on typical nanomaterial analysis problems, including assessing the purity of carbon nanotubes, determining the amount of surface-bound ligands (i.e., molecular anchors) on gold nanoparticles, and testing for the presence of PEG, a polymer commonly used in medicine on silicon oxide nanoparticles.

"Our results are a pretty close match to other techniques," reports NIST analytical chemist Elisabeth Mansfield, "but using far less of a sample."

In fact, the team reports, microTGA gets results using samples a thousand times smaller than conventional techniques. It can work with one microgram of sample and detect mass changes of less than a nanogram. "That's important because you often don't have much of a sample.," Mansfield says," If you're pulling nanoparticles out of a water sample from the environment to measure how much exists in a real world sample, you're going to have very little to work with."

"In nanomedicine, the surface chemistry is oftentimes critically important to the performance of the nanomaterial," notes FDA chemist Katherine Tyner. "When working with real life samples, we may only have a very small sample amount. MicroTGA allows us to obtain information that we otherwise would not be able to get with conventional techniques."
*E. Mansfield , K.M. Tyner, C.M. Poling and J.L. Blacklock. Determination of nanoparticle tsurface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal. Chem., 2014, 86 (3), pp 1478-1484 DOI: 10.1021/ac402888v.

**See the November 2010 NIST story "Quartz Crystal Microbalances Enable New Microscale Analytic Technique" at

National Institute of Standards and Technology (NIST)

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to