Mapping lizard venom makes it possible to develop new drugs

February 24, 2015

Lizards and other reptiles are not normally considered venomous, but a number of lizard species actually do produce and use venom. The most classic venomous lizard is no doubt the gila monster -- a heavy-bodied lizard. As the first in the world, a group of researchers at Aarhus University has made a comprehensive description of the proteins in the venom which can prove to be relevant in connection with developing new types of drugs.

Venom and lizards

Gila and beaded lizards are the classic venomous lizards. However, it was recently shown that venom is also used by a number of other species, such as the awesome Komodo monitors - the largest present-day lizards. Lizard venom has much in common with snake venom, and the current theory is that the venom production apparatus in lizards and snakes is related, but has developed in different directions. Gila and beaded lizards mainly use venom to defend themselves, while snakes use their venom to attack prey. However, the composition of venom proteins is similar in lizards and snakes.

Potential in venom

Venom research is a large field, especially due to the pharmaceutical potential of the venom proteins. The idea here is that venom proteins are capable of affecting the body's cells. Excessive amounts can be harmful and even lethal in some circumstances, but if the right dose is used, the venom proteins can be used to treat certain diseases. Snake proteins that normally cause prey to bleed can be used in small doses to treat blood clots, for example.

In the same way, work is currently being done to develop spider venom proteins to provide pain relief. The Aarhus researchers focused on gila lizards, and these are currently being used in pharmaceutical contexts. Gila lizards produce exendin-4, a small venom protein used in the treatment of diabetes and obesity, which is a competitor to Victoza® - produced by Novo Nordisk.

New venom proteins identified

A method called proteomics was used in the Aarhus study to make the first overall description of venom proteins in gila lizards. Individual proteins such as exendin-4 used to be purified from gila lizard venom, and this resulted in a number of interesting results. However, an overall analysis of all the venom proteins has not been undertaken before, which therefore made it easy to overlook the potentially important components in the venom.

Making a comprehensive analysis of the venom protein composition was not an easy task. "The work was complicated by the fact that the gila lizard genome hasn't been isolated, and genomes normally provide a map to navigate when you're using proteomics for protein identifications," says Associate Professor Kristian Wejse Sanggaard. "We therefore used a more manually based approach to identify the proteins in the gila lizard venom. This succeeded, and we've identified nineteen proteins that no one previously knew existed in the venom," he concludes.

Based on these identifications, the researchers have gained new knowledge about the function of the venom proteins, and have also gained greater insight into the evolutionary contexts of venom proteins. In addition, there are now new proteins that can potentially be used to develop future drugs.

The results have just been published in the Journal of Proteomics and an accompanying Data in Brief article.
-end-
The project was carried out as a collaboration between the Natural History Museum, the Department of Bioscience and the Department of Molecular Biology and Genetics all at Aarhus University.

Aarhus University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.