Sleep changes seen with fetal alcohol exposure partly explain learning and mood problems

February 24, 2016

Slow-wave sleep - the deeper sleep during which the brain turns each day's events into permanent memories - is fragmented in adulthood in people exposed to high levels of alcohol in the womb.

This is according to a study conducted by researchers at NYU Langone Medical Center and its Nathan S. Kline Institute for Psychiatric Research (NKI), and recently published online in the journal Neuroscience.

When combined with the findings of past studies in humans, the current study in mice suggests a new treatment approach for individuals suffering from fetal alcohol spectrum disorder, which is linked to learning, memory and mood problems, and is estimated to affect 1 in 100 adults.

According to the authors of the new study, exposure of a developing brain to binge levels of alcohol results in a permanent fragmentation in slow-wave sleep, with the extent of the fragmentation influencing the severity of related cognitive disorders.

"We have known for a long time that sleep fragmentation is associated with impaired cognitive function, attention and emotional regulation," says Donald Wilson, PhD, a professor in NYU Langone's Departments of Child and Adolescent Psychiatry and Neuroscience and Physiology, and a member of the NKI. "Our study shows for the first time that binge alcohol exposure early in life results in long-lasting slow-wave sleep fragmentation, which, in turn, is associated with learning problems."

"It appears that some of the consequences of fetal alcohol syndrome stem from changes in the brain's ability to regulate sleep," he adds.

Using a mouse model of fetal alcohol syndrome designed to estimate the third-trimester of pregnancy in humans, researchers examined slow-wave sleep in adult mice that were injected once with the equivalent of binge amounts of ethanol (drinking alcohol) seven days after they were born. Mice in a control group were injected with saline. Mouse brains continue to develop after birth, and seven days post birth in mice equates with third trimester brain development in a human fetus.

Mice exposed to ethanol were found to spend less time in slow-wave sleep and experience severe sleep fragmentation, both with a significant link to memory impairment. The research team also found that the ethanol-exposed mice were hyperactive, but the mice from the control group were not. The ethanol-exposed mice also displayed reduced and fragmented slow-wave sleep and increased sleep/wake transitions over 24 hour periods.

In addition, impaired contextual fear conditioning memory -- characterized by impairment in memory of events that occurred in specific contexts -- was seen in the ethanol-exposed mice, but not in the control group. The severity of this memory impairment was directly correlated with the extent of sleep fragmentation.

"Targeting therapeutic interventions toward sleep may help to relieve aspects of the diverse disorders linked to fetal alcohol exposure, and may open new avenues for treatment of this far too common condition," says Wilson.
-end-
Other study NYU coauthors include Kurt Masiello, Monica Lewin, Maria Hui, John Smiley, and Mariko Saito. The research was supported by a grant to Wilson and Saito from the National Institute on Alcohol Abuse and Alcoholism (R01-AA023181) part of the National Institutes of Health.

NYU Langone Medical Center / New York University School of Medicine

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.