Researchers grow cyberforests to predict climate change

February 24, 2016

VANCOUVER, Wash. - It can take Mother Nature 1,000 years to grow a forest. But Nikolay Strigul, assistant professor of mathematics and statistics at Washington State University Vancouver, can grow one on a computer in three weeks.

He and Jean Lienard, a mathematics postdoctoral researcher, created the first computer simulation that grows realistic forests down to the branches, leaves and roots of individual trees. They are using the simulation, detailed in a new paper in Royal Society Open Science, to determine how drought, warmer weather, more frequent wildfires and other climate-related changes will affect forests across North America.

They have already used the computer model to predict increases in fire rates and plant growth in Quebec hardwood forests due to rising CO2 levels and warmer temperatures.

"We call our model LES after the Russian word for forest," said Strigul, who grew up in Russia and came to the U.S. In 2001. "It is a tool that forest managers can use to create 3D representations of their own forests and simulate what will happen to them in the future."

Intricate detail, adjustable scale

LES uses recent advances in computing power to grow 100×100-meter stands of drought and shade tolerant trees that can then be scaled up to actual forest size.

The model is unique in several ways. First, it is the only forest-growing simulator that creates intricate root systems and canopy structures for each tree. Previous forest simulators could either grow one or the other.

Below ground, the roots of different trees in LES compete for water resources in each pixel of the model. Above ground, the leaves in each tree's canopy compete for sunlight in a similar fashion. Over time, the trees' canopies change shape to expose their leaves to more sunlight.

The researchers use a combination of data from the U.S. Department of Agriculture's Forest Inventory and Analysis Program and other forestry databases, as well as aerial reconnaissance from UAVs, to customize their model to particular forests. The simulator lets scientists project how changing climate conditions will impact forests over thousands of years.

"In cooperation with the U.S. Forest Service, we developed a method where we fly drones around a forest and take pictures and gather other imaging information," Lienard said. "We use this data to develop 3D models that have real distributions of space and ecological features.

Details of our drone work were recently published in PLOS One and Measurement Science and Technology," he said. "It is a method that can be adapted for practically any forest."

The effects of a changing climate

For large parts of North America, climate change is leading to more frequent drought, warmer weather and other varying natural conditions. What effect this will have on forests and their ability to recover from dynamic disturbances like wildfires or clear-cutting is difficult to determine. Scientists know relatively little about the mechanics that drive forest recovery. The process can take several decades to document and involves trees with diverse physiological characteristics competing for resources over large and ecologically varied areas.

Strigul and Lienard plan to use LES to help forest managers determine which species of trees and other ecological factors are necessary for forests to reestablish themselves after being destroyed by wildfires and other disturbances.

"Drive an hour east along the Columbia River from Vancouver and you will notice a complete transition from very dense forests to savanna and then to desert," Strigul said. "The fear is that drier conditions in the future will prevent forests in places like Washington from reestablishing themselves after a clear-cut or wildfire. This could lead to increasing amounts of once-forested areas converted to desert.

"Our model can help predict if forests are at risk of desertification or other climate change-related processes and identify what can be done to conserve these systems," he said.
-end-


Washington State University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.